
AFRL-IF-RS-TR-1998-197
Final Technical Report
October 1998

ADVANCED SYSTEM ENGINEERING
AUTOMATION (ASEA)

Modus Operandi, Inc.

John Faure

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Copyright 1994-1998, Modus Operandi, Inc.
All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under clause at DFARS 252.227-7013 (October 1988).

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-197 has been reviewed and is approved for publication.

APPROVED:

\NK S. LÄMONICA
'Project Engineer

FOR THE DIRECTOR: rLp f^sQh
NORTHRUP FOWLER III
Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burdBn, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /leave blank) 2. REPORT DATE

October 1998
3. REPORT TYPE AND DATES COVERED

Final Apr 93 - Nov 98
4. TITLE AND SURTITLE

ADVANCED SYSTEM ENGINEERING AUTOMATION (ASEA)

6. AUTHOR(S)

John Faure

5. FUNDING NUMBERS

C - F30602-93-C-0123
PE -63728F
PR -2527
TA -02
WU-28

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Modus Operandi Inc.
122 Fourth Ave
Indialantic FL 32903

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-197

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank S. LaMonica/IFTD/(315) 330-2055

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Information is one of the most important products of the systems and software development life cycle, and today's
computer-based tools do not fully exploit it. In general, currently available tools operate in isolation from each other, exist
on incompatible platforms, are difficult to learn to use, may have excessive per user costs, and have limited supported
lifetimes.

This report describes the development of an open integration framework, known as Catalyst, which was designed to increase
the effectiveness of system and specialty engineers. Through a software "building block" approach, the Catalyst concept
supports the engineering, communication, and management activities of a system software development. Catalyst, based on
a Common Object Request Broker Architecture (CORBA), provides for the creation of a unified web of interrelated system
data that can be browsed, analyzed, corrected, manipulated, and moved from tool to tool. These capabilities help to capture,
preserve, access, and fully utilize the information created during the system software life cycle, as well as support the
evolution and modernization of a project's tool suite.

14. SUBJECT TERMS

system engineering, CORBA, tool integration, framework, object oriented

15. NUMBER OF PAGES

108
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 230.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents
1. INTRODUCTION 1

1.1 Background 2
1.2 Objectives of the Effort 2
1.3 Scope of the Effort 2
1.4 Executive Summary 2

2. CATALYST OVERVIEW 3
2.1 Design Considerations 4
2.2 Architecture Overview 6
2.3 General Benefits 9
2.4 Lessons Learned H

2.4.1 Catalyst Principles H
2.4.2 Building Catalyst 12

3. CATALYST DEVELOPMENT 14
3.1 Development History 14

3.1.1 Risk Reduction 14
3.1.1.1 Technology Evaluations 14
3.1.1.2 CORBA Performance Testing 17
3.1.1.3 Using Only Basic CORBA 19
3.1.1.4 Vertical Slice Development 19
3.1.1.5 Comprehensive Automated Testing 20

3.1.2 Catalyst Traceability 21
3.1.3 Catalyst Change Management 21
3.1.4 Virginia Polytechnic Institute Efforts 21
3.1.5 Northrop Grumman Efforts 22
3.1.6 Integrated Security Analysis Tools ECP 23
3.1.7 Trusted Ontos Prototype ECP 24
3.1.8 Micro Process ECP 24
3.1.9 Catalyst Security Study ECP 24
3.1.10 Northrop Grumman Demonstration ECP 25

3.2 Catalyst Software 25
3.2.1 Catalyst Core IDL 26
3.2.2 Catalyst Objects 26
3.2.3 Catalyst Relations 30
3.2.4 Relation Semantics 31
3.2.5 Catalyst GRM IDL 35
3.2.6 General Relation Manager 36
3.2.7 Catalyst Object Servers 37
3.2.8 Catalyst Object Cache 38

3.2.8.1 Cache-to-Server Locking Policies 38
3.2.8.2 Cache-to-Server Saving Policies 41
3.2.8.3 Cache Loading and Swapping 42
3.2.8.4 Cached Object Structure and Swapping 43
3.2.8.5 Class and Relation Definition Swapping 44
3.2.8.6 Data ownership and sharing 45

3.2.9 Catalyst Browser 46
3.2.10 Catalyst Support Tool 47
3.2.11 Catalyst Impact Analysis Tool 48
3.2.12 Catalyst Process Definition Tool - 51

3.2.13 Catalyst Process Enactment Tool 52
3.2.14 Catalyst Administration Tool 56
3.2.15 Catalyst Tel Scripting 57
3.2.16 Catalyst QFD Tool ZZZZZZ 58

3.3 Catalyst Tool Integration 59
3.3.1 Loose Integration Strategy 60
3.3.2 Tight Integration Strategy 62
3.3.3 Client Integration Strategy 64
3.3.4 Catalyst ORACLE Integration 65
3.3.5 Catalyst RDD-100 Integration 66

3.4 ASEA Deliverables ZZZZ.66
3.4.1 Trusted Ontos Prototype ECP Deliverables 68
3.4.2 Integrated Security Analysis Tools ECP Deliverables 68
3.4.3 Security Study/Micro Process ECP Deliverables 69
3.4.4 Joint STARS Demonstration ECP Deliverables 69

4 CATALYST USAGE SCENARIOS 70
4.1 Browsing Heterogeneous Databases and Tools 70
4.2 Storing Links Between Data in Multiple Tools 70
4.3 Supporting Collaboration Using Locking 73
4.4 Capturing and Using Rationale _ 73
4.5 Impact Analysis _ 74
4.6 Process Enactment 74
4.7 Migrating Data Between Tools 75
4.8 Backing Up Multiple Tool Baselines 76
4.9 Contractor/Subcontractor Collaboration and System of Systems Development 77
4.10 Storing Tool Data When the Tool is not Available 79
4.11 Linking to WWW Pages _ 81
4.12 Generating WWW Pages 82
4.13 Providing a Common Interchange Platform 82
4.14 Building Object Networks from Documents ., 82

5 CATALYST APPLICATIONS 85
5.1 Joint STARS 85
5.2I-SPECS ZZZZZZZZZZZ.86
5.3 Warner Robins Air Logistics Center 86
5.4 Cape Canveral Launch Operations & Support Contract 87
5.5STRICOM 87
5.6 MCC Software and Systems Engineering Productivity 89
5.7 NAWC GEODE SBIR ™ 89

6 FUTURE DIRECTIONS 91
6.1 Platform Support 91

6.1.1 Java Clients 9]
6.1.2 VisiBroker Servers 91

6.2 Browser Improvements 92
6.2.1 Network Browser 92
6.2.2 Schema Browser 92
6.2.3 Better Object Community Support 93

6.3 Distributed GRM Support 93
6.4 Content Based Queries 94

11

List of Figures
Figure 2.1-1. Catalyst Overview 4
Figure 2.2-1. Catalyst Architecture 8
Figure 3.2.8-1 Catalyst Object Cache Architecture 39
Figure 3.2.9-1. Catalyst Browser Tool 47
Figure 3.2.11-1. Example of an Object Network 49
Figure 3.2.11-2. Catalyst Impact Analysis Tool 50
Figure 3.2.11-3. Sequence of Operations During Impact Analysis 51
Figure 3.2.12-1 Catalyst Process Definition Tool 52
Figure 3.2.13-1 Process Enactor Screens 54
Figure 3.2.13-2 Catalyst Process Enactment Tool 55
Figure 3.2.14-1 Catalyst Administration Tool 56
Figure 3.2.16-1 Catalyst QFD Tool 58
Figure 3.3.1-1. Loose Integration Strategy 61
Figure 3.3.2-1. Tight Integration Strategy 63
Figure 3.3.3-1. Client Integration Strategy 64
Figure 4.2-1 Storing Links Between Data in Multiple Tools 72
Figure 4.7-1 Simple Tool to Tool Data Migration 75
Figure 4.7-2 Migrating Design Data into Simulators 76
Figure 4.9-1 Contractor/Subcontrator Collaboration 78
Figure 4.10-1 Storing Tool Data when the Tool is not Available 80

List of Tables
Table 3.2.2-1 Catalyst Standard Attributes 29

HI

1. Introduction

This Final Technical Report documents the objectives, history, and results of the
Advanced System Engineering Automation (ASEA) effort under contract F30602-
93-C-0123, sponsored by the US Air Force Research Laboratory/ Information
Directorate. The ASEA prime contractor is Modus Operandi, Inc., formerly
known as Software Productivity Solutions. The ASEA subcontractors were
Northrop Grumman Surveillance and Battle Management Systems (SBMS), MTM
Software Engineering, Virginia Polytechnic Institute, Odyssey Research
Associates, and Ontos.

The primary product of the ASEA effort is the Catalyst system. An important
goal of this report is to preserve and communicate the rationale for Catalyst's
unique design and implementation and what we learned as Catalyst was
designed. Many engineering environments have been created - with varying
degrees of success. The designers of Catalyst participated in some of these
efforts firsthand and followed the progression of others through the literature.
These experiences drove Catalyst to follow some different paths, which resulted
in a much more successful system at a fraction of the cost that was spent
developing other environments.

This Final Technical Report (FTR) presents an overview of the Catalyst system,
and then describes its parts and their development history. The items that were
delivered are listed, followed by a series of descriptions of generic Catalyst
applications. The applications of Catalyst on pilot projects are then described,
followed by a list of enhancements that we believe are worthy of consideration
for future implementation.

This FTR does not duplicate information contained in the other ASEA
documentation, but provides a summary of the effort and gives insight and
rationale into the resulting Catalyst system. The FTR is supported by the
following Interim Technical Report documents:

• Volume 1 - Catalyst Interim Technical Report

• Volume 2 - System Engineering Key Processes

• Volume 3 - System Engineering Best Practices

• Volume 4 - Catalyst Security Study

• Volume 5 - ASEA ECP - Integrated Security Analysis Tools

• Volume 6 - Micro-Process Enactment Study

A large number of other documents were produced under the ASEA effort
including an entire suite of 2167A documents. More detailed information about
Catalyst tools and design can be found in these documents. The software user
manuals and tutorials produced for Catalyst have been converted to HyperText
Markup Language (HTML) and are available at the Catalyst web site under
http://www.modusoperandi.com/mo_labs/catalyst/catalyst.html.

1.1 Background

The ASEA contract was a follow-on to the Systems Engineering Concept
Demonstration (SECD), Contract F30602-90-C-0021, also performed for the US
Air Force Research Laboratory. SECD successfully laid the groundwork for the
ASEA effort by researching system engineering automation requirements and
defining the automation concept, known as Catalyst.

1.2 Objectives of the Effort

The objective of ASEA was to develop and demonstrate automated system
engineering technologies that effectively support system engineering and
specialty engineering-related activities throughout the computer-based system
life cycle.

1.3 Scope of the Effort

The scope of the ASEA effort was to create a complete and robust initial version
of Catalyst that was suitable for external dissemination, evaluation, and trial use.
This goal was achieved and Catalyst has been delivered to numerous outside
users.

1.4 Executive Summary

Catalyst was developed to help engineers who are developing and maintaining
complex systems. Catalyst uses advanced software technologies such as the
Common Object Request Broker Architecture (CORBA) to integrate the tools and
databases used by an engineering project team. The integration and other
services provided by Catalyst add value by helping to realize the full benefit of
all information created during the system development.

Information is one of the most important products of engineering and today's
tools do not fully exploit it. Current tools operate in isolation from each other,
exist on different platforms, are difficult to learn to use, may have high per user
costs, and have limited supported lifetimes. Catalyst provides transparent access
to data in integrated tools and allows data to be linked together across tool
boundaries. Catalyst allows data in any tool to be annotated using text, graphics
and audio. Catalyst supports the creation of a unified web of interrelated system
data that can be browsed, analyzed, corrected, manipulated, and moved from
tool to tool. These capabilities help to capture, preserve, access and fully utilize
the information created during system development and maintenance.

Catalyst is a generic distributed information integration system and has been
applied outside of the engineering domain. Catalyst has been successfully
applied and demonstrated in several real world applications including Joint
STARS and STRICOM. Additional applications are underway at Warner Robins
ALC, MCC, NSWC, DARPA and several universities.

2, Catalyst Overview

Catalyst is an open framework designed to increase the effectiveness of system
and specialty engineers so they can produce more successful, higher quality
systems. By integrating the tools and databases used during system engineering,
Catalyst enhances the communications, management, and engineering activities
performed by systems and specialty engineers. Catalyst is a high performance,
scaleable, distributed environment based on the open industry CORBA
specification. CORBA is a specification produced by the Object Management
Group (OMG), the world's largest software consortium. The CORBA
specification defines a system for managing and communicating with distributed
objects. Transparent distribution and scalability are several benefits of this
rapidly growing, vendor-independent specification.

Modus Operandi, Inc. (formerly Software Productivity Solutions, Inc.) is the
Prime Contractor responsible for designing and implementing Catalyst. Catalyst
has benefited from Modus Operandi's ten years of practical experience in
designing and building engineering environments and in participating in the
engineering environment community. Catalyst has been designed to address the
practical problems that hinder the widespread use of engineering environments.
The keystone of our design philosophy is to make Catalyst adaptable to a user
organization rather than vice versa.

In a perfect world, Catalyst would only include tools specifically written to
conform to its own interfaces and conventions. However, since we recognized
that this is not feasible, we tried to accommodate actual practice (i.e., the user's
existing tools) in the design of Catalyst. An organization adopting Catalyst must
determine what tools they wish to use with it, how they will be integrated, and
how they will be applied to the engineering effort. An issue that must be dealt
with is the possibility that a user will access data through the tool in a way that is
not consistent with Catalyst. A tool integration must address the fact that data
may still be created, deleted, locked, or modified through the tool's own
interface. A high quality integration should detect and handle these events
either as they occur or as the affected data is accessed.

Catalyst is designed for easy and incremental adoption, for providing
capabilities and benefits unavailable through Commercial-Off-The-Shelf (COTS)
products, and for performing and scaling well enough to support large
engineering efforts. Each engineering organization uses a unique combination of
tools, methods, and processes. An overview of Catalyst is illustrated in Figure
2.1-1. Supporting organizations by adapting to their choices was a primary
motivation in the design of Catalyst. Using the portable and open CORBA
specification as the basis for Catalyst will prevent technological obsolescence and
reliance on a specific hardware, software or operating system vendor. Catalyst is
well positioned for supporting new levels of system engineering integration and
productivity into the 21st century.

2.1 Design Considerations

One of the most important considerations in making a tool integration
environment acceptable to potential user organizations is supporting the tools
these organizations already own and use. Most organizations have a major
investment in cost, time, training and experience in their tools, which typically
include a mixture of COTS, Government-Off-The-Shelf (GOTS) and custom tools.
Considering this fact, it was recognized early in the effort that few organizations
would abandon their existing tool suite (and its accompanying legacy data) in
favor of another tool suite that happened to be integrated into an environment.
In addition, trying to choose the most "popular" set of tools and integrating them
is difficult because there are many popular tools in use in many combinations. To
address these issues, Catalyst was designed to make it as easy as possible to
integrate tools, which enables an organization to integrate its own choice of tools.

Your Processes

Documents E^

J

Spreadsheets

M
Your Methods

& Models

Catalyst
Process
Enactor

Catalyst
Tel

Scripting

f Catalyst
General
Relation
Manager

Catalyst
Object
Servers

Catalyst •
Impact i

Analysis j Your
Client
Tools

Your
COTS

Databases

Legacy j
Information;

Your ' \ Systems I
COTS ' - '
Tools]

Your Data Models

Figure 2.1-1. Catalyst Overview

Another important consideration was to allow Catalyst to be introduced into an
organization incrementally, with incremental benefits realized. Most user
organizations are very reluctant to embrace any new technology that requires a
very high initial investment before any benefits are realized. Any new
technology that disrupts on-going projects or radically changes the development
process is not likely to be accepted. As a result, Catalyst was designed as a
number of "building blocks" that can be used as desired with associated benefits.
In addition, using distribution based on CORBA enables Catalyst to integrate a
tool's data "in-place." This design allows a tool to continue to store its own data
and to be used as designed while Catalyst gains access to its data. This non-
intrusive integration paradigm is transparent to existing users of the tool. Such
design choices allow Catalyst to be adopted incrementally without disrupting the
normal operations and culture of an organization, preserving vital corporate
information.

To make incremental adoption viable and to improve overall acceptance of
Catalyst, the Catalyst team has carefully avoided relying on any COTS packages
with large up-front or per-user license fees. Catalyst has a lightweight
infrastructure based on CORBA, which supports most Catalyst operations.
Currently, SunSoft's NEO implementation of CORBA on Solaris is being used,
which has very low runtime fees per user and no high initial fees. Future plans
include using VisiBroker from Borland to support other hardware platforms.

While it is important for a user organization to select its own choice of tools, it is
equally important that they design their own data models and their own
processes. Catalyst does not dictate the data model to be used, but rather allows
an organization to define the data model that is appropriate for the methods and
standards being applied. Various design methods and Government standards
model similar information (such as requirements, architectures, designs, tests,
and documents) differently; hence, it was recognized that any environment that
dictated the data models based on one method or standard would greatly limit
its applicability. Catalyst provides pieces of the data model that support its own
operations, examples of how various engineering activities can be modeled, and
the ability for an organization to easily and quickly create and tailor the data
models to their own needs.

Catalyst supports process improvement through its process definition and
enactment capabilities. In keeping with the overall philosophy of adaptability,
the Catalyst process capabilities are intended to provide a great deal of flexibility
in defining and enacting processes and in defining how rigidly a process must be
followed. Processes such as change management can be defined with very tight
controls to ensure proper adherence, while more creative processes such as
requirements development can be defined very loosely to allow for iteration and
evolution. Catalyst's process capabilities were designed to help users correctly
complete their tasks, and not to obstruct or control their activities. An essential
goal for these capabilities is that it be easier to perform work using them than
without using them.

Performance was another critical consideration when we designed Catalyst.
Engineering environments are complex data-intensive systems that tend to
require many system resources. An environment must perform at least well
enough that it does not become the limiting factor in how fast work can be
performed by the user. An environment must also be capable of scaling up to
large teams, because environment support is most needed for large efforts. Using
CORBA as the basis for Catalyst addresses a number of significant performance
problems by distributing the disk and CPU load across all the workstations being
used in the project. Using CORBA also enhances flexibility in load balancing and
management. Because CORBA provides location-transparent distribution,
servers and objects can be moved without affecting tools or being visible to the
user. A user can store objects of interest on his own workstation, reducing the
impact on other team members' workstations.

Other design issues related to performance are object granularity and host
network speed. Catalyst has been optimized for dealing with "fine-grained"
objects, which are better suited for use in an engineering environment than
"coarse-grained" objects. An example of a coarse-grained object might be an
entire document. This type of object is much easier to implement, but it does not
provide any insight into the structure or content of the document. An example of
a Catalyst fine-grained object might be a single requirement, a single test case, a
single device in a circuit design, or a document paragraph. This level of granularity
gives automated tools and analyses enough visibility to perform useful work.
Catalyst has also been optimized for high-speed network (LAN or WAN) use as
opposed to Internet-wide use. This choice was made because (co-located) project
teams usually interact across high-speed networks. Future initiatives are being
pursued to study and support geographically separated project teams.

2.2 Architecture Overview

Catalyst has two basic "sides." The server "side" integrates the tools and
databases that store data. This enables the data stored in these tools and
databases to be viewed inside Catalyst as CORBA objects. This is done by
wrapping the data sources with the Catalyst Core IDL, which puts a standard
interface on all the integrated data. The server side presents an interconnected
sea of engineering data, which appears as Catalyst objects and relationships.
Relationships between the data stored in various integrated tools are stored by
the Catalyst General Relation Manager (GRM). The GRM is a special server for
managing relationships.

The client "side" integrates the user tools that use the sea of integrated data to
perform interesting and useful processing for the user. The client tools take
advantage of the standard interface to data. All they need to understand is how
to talk to objects and relationships. There are no special cases. They do not need
to know where the data is stored, or by what tool.

An example of a client is the Catalyst Browser Tool. This tool allows a user to
graphically browse and manipulate all the data integrated into Catalyst. The

user does not need to understand how any of the integrated tools work or how to
use them. The user may browse data from multiple tools and may follow links
from one tool's data to another, all without knowing or caring that more than
one tool is involved.

Catalyst derives much of its utility from being able to access data using one
interface and by being able to link data that is stored in different tools. One of
the major shortcomings of current system and software engineering tools is that
they do not integrate well with each other. Some tools provide special bridges
between their products and other popular products. These bridges are often
available only for certain versions of certain tools. Worse, most of the time it is
better for the data to remain in the tool that created it. Transferring it into
another tool only creates redundancy. Catalyst overcomes these problems by
supporting links between data in different tools and by requiring that a tool only
be integrated once into Catalyst before it can interact with all other integrated
tools.

The two "sides" of Catalyst are tied together using CORBA. In CORBA,
interfaces are defined using the Interface Definition Language (IDL). IDL is used
to define object classes and the operations that each class can perform. The IDL
is compiled and converted to "stub" classes that clients can call, and "skeletons"
that are filled in by the programmer to create server programs. When a client
calls an object operation using a stub, the stub calls the CORBA Object Request
Broker (ORB). The ORB then locates the server where the object resides and
invokes the same operation on the server skeleton. The code the server
programmer has written is then executed and the result is passed back to the
client.

The ORB may need to send messages across the network if the client and server
are not running on the same machine. It does this automatically, providing a
capability known as location transparency. The client does not have to know
where the server for the object is. It just invokes the operation it wants and the
ORB does the rest.

The most important feature of Catalyst is the IDL interfaces, which are defined to
specify what operations can be performed on Catalyst objects and relationships.
These operations are defined by the Catalyst Core and GRM IDLs. These IDLs
define the interfaces between the Catalyst clients and the Catalyst servers. The
clients make calls to objects using operations defined in the Catalyst Core IDL.
These operations are implemented by the servers, which integrate data sources
into Catalyst. Example operations are get class name, get attribute value, set
attribute value, etc. Clients make calls to the Catalyst GRM IDL to create,
retrieve, and delete relationships. These operations are implemented in the
Catalyst GRM (which is a server).

Figure 2.2-1. Catalyst Architecture

The Catalyst architecture is illustrated in Figure 2.2-1. The figure attempts to
show the role of the Catalyst IDLs and the presence of clients and servers. The
Catalyst IDLs are not very long or complicated, and reflect the Catalyst
philosophy of providing simple but powerful and generic operations.

2.3 General Benefits

This section contains a high level description of the types of benefits to be
realized using Catalyst. More specific scenarios for applying Catalyst are
described in Section 4.0.

An organization using Catalyst will realize many significant, integration-related
benefits. Many of these benefits are built around exploiting the uniform access to
information provided by Catalyst's CORBA interfaces. Information is one of the
most important assets at each stage in the lifecycle of a complex system, and the
integrations made possible by Catalyst help to improve the capture, utilization,
and quality of all types of system information, as well as reducing the costs
associated with information collection and management. The following
paragraphs describe the integration benefits as they relate to information
transfer; information analysis; information capture, linking, and
communications; and state-based process capabilities.

Integration benefits related to information transfer:

• Information Transfer from Tool-to-Tool

• Information Transfer from Site-to-Site

• Information Transfer from Tools-to-Products

One of the most obvious benefits of integration is the ability to transfer data from
one tool to another. This has many applications, from subjecting a particular
design to analysis by different tools to migrating project data from an older tool
to a newer one in order to stay abreast of advances in technology. This is
particularly beneficial to programs with 10-30 year life spans. A less obvious
benefit is the ability to share data with geographically separated sites by
exporting it from one site, transmitting or physically transporting it to another
site, and then importing it. Catalyst has sophisticated facilities for merging
imported data and for maintaining the data consistency of the individual sites.
Information transfer from integrated tools can also be used to create unified
reports, graphs, spreadsheets, and other products from data that is stored in
multiple tools within Catalyst.

Integration benefits related to information analysis:

• Information Analysis for Correctness, Completeness, and Consistency

• Information Analysis for Impact Analysis and Facilitation

Catalyst contains a powerful scripted capability for analyzing data stored in
multiple tools. A script can traverse any of the data visible to Catalyst and
identify problems that may span several tools. The traceability of information
between tools and the consistency of data stored in separate tools can be
analyzed. Missing information such as unallocated or untested requirements can
be found quickly and easily. Custom analysis can be performed easily because
the Catalyst capability is scripted rather than hard-coded.

Catalyst contains complete support for identifying and assessing the impacts of
proposed changes to products and processes. This capability was designed to
assist with analyzing and documenting complex scenarios in which the effects of
changing multiple items must be assessed at once, as is usually the case in
engineering changes. Catalyst performs (perhaps several different) user-defined
searches, starting from each changed item. The potentially impacted items are
collected and organized by the changed item causing the impact. The user may
add or remove impacted items as deemed necessary. An assessment of each
impacted item related to each changed item is collected, as is the overall impact.
Organizing impacted items according to changed items allows the assessment to
be easily modified if the set of changed items is revised, as often occurs when
engineering changes are proposed or developed. This capability will
considerably facilitate the important but often informal process of impact
assessment.

Integration benefits related to information capture, linking, and communications:

• Information Capture and Linking

• Transparent Information Browsing

• Improved Team Communications

As a program progresses, the rationale and informal background information
that explains why program decisions were made and how a system was intended
to operate is often lost or forgotten. Paper-based documentation standards and
practices are not set up to accommodate the informal information that is often
crucial for understanding a system. Personnel turnover also usually results in an
irreplaceable loss of knowledge.

Catalyst addresses these problems through very flexible information annotation
and linking capabilities. Text, graphic, and audio annotations can be created and
linked to any object in Catalyst, regardless of where the object is stored. For
example, a requirement stored in an ORACLE database may be annotated with a
graphic diagram and verbal discussion, which are linked through Catalyst to the
requirement and available for review at any time. Furthermore, objects that are
conceptually related, such as a trade study and the subsystem it pertains to, may
be physically linked so that the trade study can be located from the subsystem
and vice versa. Annotations on objects may themselves be linked together into
arbitrary networks. Catalyst supports the creation of an interrelated network of

lü

many formats of information that can be stored and browsed at a later date. With
Catalyst, there is no reason for formal or informal information of any type to be
lost or separated from the project components to which it applies.

All the information stored in Catalyst can be graphically browsed using a point-
and-click interface. The Catalyst Browser transparently accesses information
through Catalyst, regardless of the integrated tool in which it is stored or the
format in which it is stored. This allows novice users to view data that may be
stored in ORACLE, RDD-100, or any other integrated tool without knowing
anything about how to operate these tools. Furthermore, it is possible to follow
interconnected data from tool to tool and document to document without any
special tool skills. For example, it would be possible using a few clicks to follow a
system requirement to the software and hardware requirements to which it
traces, and then to its test plans, descriptions, cases, and results. Traditionally,
this traversal would require leafing through many separate documents and
would require far more time and effort. In Catalyst, it is possible to graphically
follow the traceability of the requirement through many documents to its test
results using just a few mouse clicks.

The easy graphical browsing made possible by Catalyst will help the project
team understand the project and will reduce the learning curve of new team
members. It will also foster communications between different specialties and
different teams within the project by allowing people to easily browse and
understand complex designs and data created by team members.

Integration benefits related to state-based process capabilities:

• Integrated, State-Based Process Capabilities

The Catalyst process capabilities provide unique benefits in defining, enacting,
and improving engineering processes. The process capabilities exploit
integration by driving the execution (enactment) of processes off the actual states
of work products being created and manipulated by integrated tools. Catalyst
allows processes to be seamlessly changed and improved in mid-stream. The
state-based approach developed for Catalyst allows each work product in the
process to "find" its place in a new process automatically. This important feature
is crucial for supporting smooth process improvement in on-going projects.

2.4 Lessons Learned

This section contains brief descriptions of key lessons we learned or principles
we followed that we feel were important in successfully creating the Catalyst
system.

2.4.1 Catalyst Principles

Know exactly what problem you are solving and why. We realized early on that
duplicating COTS functionality was not a good idea. We focused on providing

11

integration and other services not found anywhere for sale. Knowing these two
things helped tremendously to scope and control the effort. They stopped us
many times from wandering down what would have been dead ends. They also
helped to divert a lot of flack from the project, because there is no need to take
criticism for problems you are not trying to solve. You can't solve every
problem, so pick your problem carefully and stick to it.

Learn the financial and political realities your project will have to face and design
your architecture to accomodate them. The most convincing technical arguments
are political and financial ones. If your system conflicts with the way users do
business, they won't use it. If your system carries too much risk for your users,
they won't use it. If your system is too expensive for your users, they won't use
it.

Use standards where possible for many reasons. Using standards helps to avoid
becoming involved in "religious" wars because many decisions people would
argue over have been made for you. Using standards leverages existing efforts.

2.4.2 Building Catalyst

Use a small team of people to design and build a complex system so that
communication overhead and problems don't complicate the effort. A small
team also helps to ensure that the design and principles of the system stay
consistent and do not get compromised.

Give each team member complete responsibility for a well defined part of the
system and communication overhead will be very low and the sense of
ownership will be very high. Each of the tools and servers in Catalyst was built
and owned by one person. This proved to be a very effective way to bring new
people up to speed and to ensure that a coherent and quality design resulted.

Use automated testing to reduce testing costs and to improve quality. Packaging
the GRM and Object Server tests so the end user can run them really paid off.
Test code which would normally be just overhead to write is now actually a
useful Catalyst feature.

Technology will constantly evolve and change. If you remain flexible this can be
very benficial. Porting all the clients to Java will take a lot of work but will allow
universal access to them. Porting all the servers to VisiBroker will allow them to
run on many platforms.

Don't be afraid to throw out or rewrite parts of the system if a better design is
discovered. The original design for object community interchange used a custom
scripting language and a parser and interpreter written in C++. When Mark
Wallace joined the team he suggested using Tel, a standard, extensible scripting
language. We gladly threw out 2500 lines of working code and in two weeks of
effort had Catalyst integrated with an industry standard scripting language
which provides far more functionality.

12

Stress test the core technologies being used to build your system with operational
size test cases. We tested and timed NEO using programs which created and
deleted thousands of objects and sent tens of thousands of messages before we
were convinced it was suitable for the task.

Stick to the core capabilities of a new and emerging technology and you will
reduce the risk that it will evolve in a way which leaves your project stranded.
We used only core CORBA features and were able to port Catalyst across six
different versions of NEO (SunSoft's CORBA product) without significant
impacts. During the ASEA effort, the CORBA specification was changed to drop
several services, revise most of them, add several new ones, and in four years
never completed the specifications of several others.

Message traffic between components is a critical performance cost in distributed
systems. Systems must be designed to optimize message throughput and avoid
message bottlenecks.

Multithreading and concurrency management are the the hardest parts of
CORBA programming. We discovered that Neuron Data's graphics and data
structure libraries were not multithread safe. This forced us to reimplement
several of its key data structures in a multithread safe way.

Keep the system simple yet powerful with no special cases anywhere. The
Catalyst Core and GRM IDLs have required only minor changes in the four years
since they were written.

Validate the system architecture by building a vertical slice running from the
user interface through the lowest level server, then add to the system by building
outwards. This was done very successfully in Catalyst, reducing the technical
risks very early in the program and allowing us to have a working system early
in the development.

Spend enough time to completely design and understand complex parts of the
system before starting to build them. Almost half of the time required to build
the Process Enactment Tool was spent on designing and thinking about it. No
significant design changes were required during its implementation or use.

13

3. Catalyst Development

This sections describes the development history of Catalyst, with emphasis on
those activities that contributed to the success of the effort. Development in
general is discussed in Section 3.1. The development of each piece of Catalyst
software is discussed in Section 3.2.

3.1 Development History

3.1.1 Risk Reduction

Many risk reduction activities were undertaken on the ASEA project. Many
other organizations had tried to build software engineering environments with
limited or no success. Catalyst is a system engineering environment, but in many
ways the engineering and technical challenges are the same. Catalyst benefited
from Modus Operandi's years of experience in building and marketing
engineering environments and tools. This experience helped us identify areas of
technical and marketing risk that needed to be addressed. The following sections
describe the technical risk abatement activities that helped us succeed.

3.1.1.1 Technology Evaluations

A considerable amount of effort was invested in evaluating COTS technologies
that could be used to help develop or be integrated with the environment. We
followed a systematic approach to performing the evaluations. Detailed
information about the evaluations is presented in the ASEA Interim Technical
Report, Volume 1. Highlights of this work and their relevance are presented in
this report.

Object Oriented Databases

Modus Operandi evaluated five object-oriented databases:

• Objectivity/DB 2.0, an object-oriented database product developed and
marketed by Objectivity, Inc.

• VERSANT Release 2, an object-oriented database product developed and
marketed by Versant Object Technology Corp.

• ONTOS DB 2.2, an object-oriented database product developed and marketed
by ONTOS, Inc.

• Object Store, an object-oriented database product developed and marketed by
Object Design, Inc.

• GemStone, an object-oriented database product developed and marketed by
Servio Corporation.

Each product's technical documentation was reviewed, discussions were held
with vendor representatives, and some hands-on benchmarking and test
program development was performed. The functionality, usability, and platform

14

support of each Object Data Management System (ODMS) was evaluated.
Functional capabilities included basic database functionality such as concurrency
control and recovery, as well as object-oriented database features such as
inheritance and versioning. Usability measured the application development
and maintenance process.

The net result of the evaluation was there was no ODMS that was sufficiently
mature to support its intended role within Catalyst. Therefore, no ODMS was
selected, and the selection decision was deferred until the second Catalyst build.
Problems with the ODMSs that we evaluated include: they were difficult to use,
they lacked any industry standards, they did not support schema migration, and
they were in a rapid state of evolution.

In retrospect, it is interesting to note that over the last four years, ODMSs have
still not gained much market share or widespread use. Several of the vendors,
such as ONTOS, no longer sell ODMS. There are two major reasons for this
trend. First, creating an Object Data Management System that maintains the
classic database Atomicity, Consistency, Isolation, and Durability (ACID)
properties, supports distributed clients to access it, and still performs adequately
is very difficult to achieve using a generalized solution. This difficulty has
prevented any one ODMS vendor from creating an easy to use ODMS that will
"do it all" and still perform well.

The second reason for the lack of widespread ODMS usage is that CORBA has
solved many of the distribution and management aspects of the problem. If
CORBA is used to provide location transparency and distribution, there is no
need for an ODMS to perform the same functions. The ObjectStore database
eventually was used in Catalyst, but only the single-user Persistence version.
This was sufficient because each Catalyst Object Server maintained its own
Persistence database and did not share it with any other process. The
distribution and multi-user features of an ODMS were not needed.

Interleaf

Interleaf was evaluated as a possible programmable document interface to
Catalyst. The idea was to use Interleaf's programming interfaces to get data
from Catalyst, format it as a document, and present it to the user. The user
would be able to add to, modify, and delete the document data. These changes
would be propagated to the Catalyst objects. This would provide WYSIWYG
editing of data in tools integrated into Catalyst.

Unfortunately, it was found that Interleaf programming was very difficult, not
reliable, and that Interleaf was not very supportive in helping people program
their product. This risk reduction short-circuited what would have been a time
consuming dead end.

15

Multiplatform GUI Development Tools

Modus Operandi evaluated five multiplatform GUI development tools for use in
creating the user interfaces for Catalyst:

Galaxy by Yisix

XVTbyXVT

C++ Views by Liant

Open Interface by Neuron Data

Bedrock

C++ Views was an early front runner in the selection process, however, when
Neuron Data dropped their run time fees, Open Interface was selected for use.
Open Interface was used very successfully on Catalyst for four years. It has a
few bugs and quirks, particularly with printing, but overall it works reliably and
is fairly easy to program. It was selected partly because it has been around since
1984 and is therefore a mature product.

Its maturity probably lead to one of the more serious shortcomings of Open
Interface. In the late 1980s multithreaded programming became more and more
prevalent. We discovered that Open Interface was not multi-thread safe, even
with regard to its most basic data structures. This lead Modus Operandi to
create new implementations of the Open Interface list and hash table classes,
using the same interfaces as the old ones. The new implementations are thread
safe.

It is interesting to note that Java has pretty much destroyed the market for other
multiplatform GUI development tools.

ToolTalk

The ToolTalk service is a network-spanning interprocess message system that
promotes cooperation among independently developed applications.
Cooperating application developers agree on a message protocol and use the
ToolTalk service to deliver the messages. ToolTalk was completely superseded
by CORBA, which is much more general purpose.

Orbix

At the time of the evaluations, Orbix did not provide enough of the CORBA
architecture to support Catalyst requirements. IONA was also a very small
company, perhaps lacking the resources for completing a production quality
implementation of CORBA. For these reasons, it was decided that Orbix would
be inappropriate to use in Catalyst. In the four years since the evaluation, Orbix
and IONA have grown considerably. However, they still are not the market
leader in either performance or market share.

16

The new Internet Inter-ORB Protocol (HOP) specification - approved by OMG
and supported by most ORB vendors - will allow Catalyst to talk to both clients
and servers implemented in Orbix and other ORBs in the near future. The lack of
a standard API still prevents source code compatibility across vendor products
and is a serious shortcoming with CORBA as of early 1998.

DOE (later renamed NEO)

A lengthy evaluation that included lots of performance testing was carried out
using Distributed Objects Everywhere (DOE) from SunSoft. The Early
Developers Release EDR 1.1 was found to be complete, reliable and fast. At the
time of the evaluations, it was judged to be the best quality product from a well
established vendor and was selected for use in Catalyst. Since that decision was
made, Catalyst has been ported across many versions with little disruption: DOE
EDR 1.1, EDR 2.0, DOE pre-Beta, DOE Beta, NEO 1.0 and NEO 2.0. Now,
ironically, six versions of the product later SunSoft, has decided that it is not
strategic for platform vendors to sell middleware products and has dropped the
product in favor of reselling VisiBroker from Visigenic.

Rogue Wave Tools.h++

The C++ library from Rogue Wave was evaluated and selected to provide
standard data structures such as strings, lists, hash tables etc. Once development
got underway we realized that Open Interface already provided lists and hash
tables, and their types were used as parameters to many user interface operation
calls. If Rogue Wave lists and hash tables were used, code and run time would
be required to convert from Rogue Wave lists to Open Interface lists before the
calls could be made, etc. In the end, only Rogue Wave's string management,
regular expression, and string tokenizer classes were used. The string class
provides advanced reference counted and late copying management of string
data, and proved very useful. The regular expression and string tokenizer
classes were very useful in the Catalyst Process Enactor Tool's parsing of
expressions specified by entry and exit conditions. Open Interface data
structures were used for everything else. This is probably a common reality
when using a user interface class hierarchy.

3.1.1.2 CORBA Performance Testing

The performance characteristics of CORBA were used to influence and guide the
design of Catalyst. Modus Operandi's experience in building several other
distributed object-oriented systems also demonstrated the importance of a few
key performance characteristics in determining the responsiveness and feasibility
of the resulting system. These characteristics stem partly from the nature of
object-oriented systems in general and partly from the engineering domain in
which the systems operated.

Because Catalyst was to be an object-oriented system, it would represent and
manipulate all data as objects connected together by relationships. This is a
connection-oriented model where data is located and used by navigating from

17

one object to another via the relationships between the objects. Catalyst was to
use a fine-grained model, meaning that an entity such as a requirements
document would be represented by many objects connected together. An object
in a fine-grained model may represent a single document paragraph, a
requirement, a test case, an interface, etc. In a coarse-grained model, an object
may represent an entire document. The advantage of a fine-grained model is
that the structure and content of the data is explicitly represented, making it
possible to perform detailed analyses and transformations.

Fine-grained object-oriented systems that represent engineering data tend to
create, manage, and operate on fairly large numbers of objects and relationships.
For example, a complex weapons system can easily have 10,000 requirements
that are linked to functions, system components, and test plans and procedures.
A complex board-level design can contain hundreds of devices interconnected
with thousands of circuit paths. Handling this magnitude of data requires that
objects and relationships be light-weight in time and space. Because each object
is usually linked to 5-10 other objects, there tends to be one order of magnitude
more relationships than objects in a system.

Experience with other object-oriented systems dictated that a useful and
responsive system would have to support on the order of 100 object operations
and 1000 relationship operations per second. Empirical observations suggested
that because data access times tend to be the most important, it was acceptable
for object and relationship creation and deletion operations to be one order of
magnitude slower than their corresponding access operations.

Using these estimates, we built and measured several representative prototypes
to determine the actual performance characteristics of the COTS CORBA
implementation. We found that NEO supported up to 330 object operations per
second on a SPARCstation20, well within our desired goal for Catalyst object
performance. Our measurements indicated that the performance bottleneck was
the time required to traverse the network to reach the desired CORBA object, and
not the time spent actually performing the operation. This measurement
demonstrated to us that any implementation in which one Catalyst relationship
was implemented using one CORBA object would be too slow to meet our goals
by close to an order of magnitude.

To achieve the desired relationship performance, we designed a General Relation
Manager object (GRM) that would store very large numbers of relationships
using only one CORBA object. This improved performance by allowing one
CORBA object operation to include a group of Catalyst relationship operations.
This was a winning design since the typical pattern of access in object-oriented
systems includes many relationship group operations, such as retrieve all the
relationships for a particular object. The Catalyst GRM performance ranges from
330 relationship operations per second for single relationship operations to 6000
relationships per second for large groups of relationships. This design also
reduced the number of bytes required to store a relationship from around 3000
(required for a CORBA object) to only 48 bytes.

18

Using past measurements and estimates helped us to set the necessary
performance goals for Catalyst. By creating and measuring prototypes early in
the development cycle, we were able to create a design architecture that achieves
the system goals. Having hard numbers to work with, both for estimates and
actual results, was a key factor in creating a usable and practical Catalyst system.

3.1.1.3 Using Only Basic CORBA

CORBA was a relatively new and evolving technology when Catalyst was being
designed. To minimize the risk to the project, only the most basic CORBA
features were used to build the core Catalyst system. The motivation for this
strategy was to avoid having CORBA features (that Catalyst relied on) changed
or dropped in new versions of CORBA. Sticking to the features that were central
to CORBA reduced this risk. Catalyst primarily relies on being able to define
IDLs, create and manage objects and send them messages. This is the most
powerful capability of CORBA. Of the many CORBA Services that were being
proposed, only the Name Service was used.

This proved to be a winning strategy. Catalyst has been ported across six
different versions of NEO and two versions of CORBA itself. Each of these ports
was accomplished in less than a week with no major impacts to the system.
Many of the early CORBA service specifications have been heavily modified or
dropped, and most have never been implemented by any of the COTS vendors.
The Name Service - one of the most basic services - has been implemented by
NEO since the first release, and has been implemented by other COTS vendors
since. Many of the really useful CORBA Services such as the Query Service do
not have well designed specifications and are not implemented by any vendors.

As CORBA matures, Catalyst can take advantage of any new and useful features
that become available. The Object Transaction Service has recently been
implemented by several vendors, and may be useful for supporting distributed
transactions.

3.1.1.4 Vertical Slice Development

A vertical slice of the Catalyst system was built as soon as it was possible to do
so. Building a vertical slice involved creating a Neuron Data user interface that
talked to the Object Cache, a demand based object and relationship buffering
system which was created to simplify client development, reduce network traffic,
and improve client performance. The Object Cache in turn talked to the Catalyst
Object Servers and GRM. These components represented a slice of the system
from the user interface down to the lowest level servers. Building this slice
provided early confirmation that the technologies selected and the architecture
created using them would perform well and would work reliably. This is a
critical risk reduction function when new technologies are being used. In
Catalyst, almost every technology from Neuron Data, C++, CORBA, Object
Caching, to General Relation Management were all new to the design team.

19

Building distributed object-oriented systems was familiar territory but all the
tools were new.

The vertical slice confirmed that the Catalyst architecture was sound and that
performance of the system was very good. Stress tests were performed in which
10,000 dummy requirements were loaded and linked together. Catalyst handled
this load without any problem and without any performance degradation. Later
tests with 100,000 dummy requirements yielded similar results. Eventually the
ObjectStore and GRM databases that store the objects and relationships would
fill up the disk drives where they are located but there is no inherent limitation in
Catalyst or CORBA.

Once the vertical slice was operational the system was built outward
horizontally. New client tools such as the Process Definition, Process Enactor,
Quality Function Deployment (QFD), Impact Analysis, Support, and
Administration were added. More servers were added, and more tools such as
ORACLE and RDD-100 were integrated. Very little risk was associated with any
of these tools, since the overall architecture had been validated very early in the
development.

None of the code used in the vertical slice was prototype code that was thrown
away. No code was ever written in Catalyst with the intention of throwing it
away one day and replacing it with the "real" code. The "real" code was always
written when it was needed, removing the need to go back later and rewrite it.
Code has been rewritten or thrown away when better ideas and better designs
have been discovered. Writing the real code from the start, but not being afraid
to throw it out or rewrite it later when it made sense, has contributed to the
overall high quality of the Catalyst software.

3.1.1.5 Comprehensive Automated Testing

The key parts of Catalyst that do not have user interfaces have always been
tested using automated and comprehensive test programs. These programs
exercise all the features of the code and automatically determine if the code
passes or fails the test. The results are summarized at the end of the test. This
allows tests to be rerun effortlessly any time during the project that the
developers need to check the software. When changes were made or new
features were added, all the tests were rerun to make sure new bugs were not
introduced. Many times the automated tests identified problems that were
overlooked by the developers.

The Object Cache, Object Servers, and General Relation Manager all have
comprehensive test suites. The Object Server and GRM tests can even be run by
the end user to make sure Catalyst was installed correctly and that it is still
working correctly. When new tools are integrated, the Object Server tests can be
run to make sure the integration was done properly. The Object Server and
GRM test suites also include timing tests to help evaluate the performance of
changes to the code and of different hardware platforms.

20

Creating automated test suites took perhaps 25% more time than not doing so,
but it has paid off immeasurably. The end user's ability to run the full test suites
is a very valuable capability.

3.1.2 Catalyst Traceability

Catalyst was used to develop and track the traceability of its requirements and
tests. As soon as enough of it was operational, the Microsoft Word documents
for Catalyst were parsed using a custom (2-page) C++ program and the contents
stored in Catalyst. This technique was used to capture the 610 system level
requirements for Catalyst. When the 1100 software and 25 interface
requirements were created, they were created and linked in Catalyst. The
traceability of all the requirements to the tests was also created and linked in
Catalyst.

The complete Catalyst requirements traceability tables are created using a two
page Catalyst Tel script. These tables are 225 pages long and give the tracing of
system requirements to software and interface requirements and then to tests. A
second set of tables gives the inverse tracing from tests back to requirements.
Using Catalyst to maintain its own traceability saved many man months of effort.
New and completely up to date tables can be generated any time they are needed
in a few minutes. Using the Catalyst Browser to review and follow the
traceability is actually much faster and more convenient than looking through
the paper traceability document.

3.1.3 Catalyst Change Management

The Process Definition Tool was used to define a process for performing change
management. This process allows users to suggest changes to a system being
developed. The changes must be reviewed by management and then assigned to
an engineer for completion or rejected.

The change management process was followed on Catalyst using the Process
Enactment Tool. Changes to Catalyst and items of work that had to be
completed were entered into Catalyst by the engineers working on the project.
Catalyst was used to keep track of who was working on what, what its priority
was, when it was due, and how far along each piece of work was. This was
extremely helpful on a complex project such as ASEA. At times there were more
than 150 different items to be completed. Keeping track of them all manually
would have been a very time consuming and error prone process. Catalyst
continues to be used to track work items and changes in the follow-on programs.

3.1.4 Virginia Polytechnic Institute Efforts

Virginia Polytechnic Institute was a subcontractor. The Virginia Tech (VT) team
was lead by Dr. Wolter Fabrycky, who is a very well known systems engineer
and author. Dr. Fabrycky and his team provided valuable insight into the
systems engineering principles that were used to design Catalyst. Dr. Fabrycky
continues to pursue applications of Catalyst to system engineering in areas

21

including nuclear site decontamination and disposal. Dr. Fabrycky has created
the System Engineering Design Laboratory (SEDL) at Virginia Tech to foster
academic and industry cooperation in system engineering research and
application.

Virginia Tech performed several important tasks under the ASEA effort. They
were responsible for identifying processes and practices that were part of good
system engineering practice for possible automation by Catalyst. Virginia Tech
identified many candidate engineering practices, some of which were presented
in detail to the ASEA reviewers and end users. Of these, the Quality Function
Deployment (QFD) technique was chosen for implementation. QFD was of
interest to both Northrop Grumman and the Air Force as an efficient way to
prioritize and summarize the many interrelated factors affecting any engineering
effort.

Virginia Tech identified many potential engineering processes. An actual
process used by Northrop Grumman for performing Functional Configuration
Audit (FCA) was defined by VT using the Process Definition tool. This effort
provided very valuable feedback on process definition and enactment to the
Modus Operandi team. VT also modeled the System Software Engineering
Process using Catalyst. This is a large and comprehensive process that also
provided much insight into process modeling.

The complete results of the Virginia Tech efforts are documented in ASEA
Interim Technical Report Volume 2, System Engineering Key Processes, and Interim
Technical Report Volume 3, System Engineering Best Practices.

3.1.5 Northrop Grumman Efforts

Northrop Grumman Surveillance and Battle Management Systems (SBMS) was a
subcontractor. The Joint Surveillance Target Attack Radar System (Joint STARS)
program being performed by Northrop Grumman was the original target end
user for Catalyst. Joint STARS is a very complex airborne side looking RADAR
system designed for detecting and track ground based moving targets. Joint
STARS is a very complex systems and software engineering effort which made it
a good candidate for Catalyst application. Northrop Grumman was responsible
for providing insight into the system engineering tasks and problems confronted
by a real world, very complex system development.

The selection of ORACLE and RDD-100 for integration into Catalyst was made to
support Joint STARS. The original system requirements for Joint STARS were
captured using a custom ORACLE database designed by Northrop Grumman
known as the Requirements Allocation Database (RADB). No capable COTS
requirements tools existed when the system requirements were developed
forcing the use of a custom solution. Some of the later Joint STARS subsystems
were developed using the COTS RDD-100 system engineering tool. RDD-100
provides many features not implemented in the RADB. Some of the system
requirements in the ORACLE database either partially overlap or logically trace

22

to requirements stored in RDD-100. Capturing and using the connections from
ORACLE data to RDD-100 data was a perfect application of Catalyst.

Northrop Grumman provided the requirements management part of the schema
for the ORACLE Requirements Allocation Database (RADB) used to manage and
trace Joint STARS requirements. Providing this schema allowed Catalyst
designers to work with the same database structure that was used by Northrop
Grumman. The schema helped provide insight into what needed to be
supported by the Catalyst ORACLE integration.

Northrop Grumman provided the schema for RDD-100 as it is used on Joint
STARS. This schema was useful in designing the Catalyst RDD-100 integration.

Northrop Grumman provided example data sets for both ORACLE and RDD-
100. These data sets had been sanitized so heavily that little content remained.
Even so, the example data sets were very useful, since the structure of the data
remained the same. The interconnections between data objects is very important
in Catalyst, and probably contains more information than the contents of the
objects. The example data sets were used to test the integrations of ORACLE and
RDD-100.

Northrop Grumman helped Modus Operandi create two sets of public domain
data. These data sets have the same structure as real Joint STARS data, but do
not contain any real Joint STARS information and do not accurately describe
Joint STARS in any way. The first public domain data set was known as FONEY
RADAR, indicating that it was the design of a non-existent radar system, known
as the FONRAD. The content of this data set was created by Northrop
Grumman. This was a small but useful data set that was used in many
demonstrations.

The second public domain data set described a possible but different design for
Joint STARS. The content of this data set was created entirely by Modus
Operandi from public domain data sources. Northrop Grumman reviewed this
data set and made suggestions for making it appear to be plausible while
verifying that it did not describe the real Joint STARS design. The second data
set is much larger, containing over 400 requirements.

More information on the Joint STARS application of Catalyst is contained in
Section 5.1.

3.1.6 Integrated Security Analysis Tools ECP

The ASEA contract was modified by an Engineering Change Proposal (ECP) to
integrate a set of security analysis tools developed by Odyssey Research
Associates, Inc. (ORA). ORA enhanced and integrated together several security
analysis tools and performed a design study on how to integrate them into
Catalyst. Unfortunately, due to a funding cut the tools were never integrated
into Catalyst. More information on this ECP can be found in ASEA Interim
Technical Report, Volume 5, Integrated Security Analysis Tools.

23

3.1.7 Trusted Ontos Prototype ECP

The ASEA contract was modified by an ECP to develop a multilevel secure
object-oriented database prototype. ONTOS performed this work using
workflow-based security analysis modeling. The prototype database system was
delivered and demonstrated. More information on this ECP can be found in the
documents that were produced by ONTOS, including the Philosophy of Protection
Document and the Demonstration Users Manual.

3.1.8 Micro Process ECP

The ASEA contract was modified by a two-part ECP. The first part was to study
and design an approach for supporting micro processes. The second part, which
is discussed in the next section, was to perform a security analysis of Catalyst
and make recommendations for improving security.

Modus Operandi performed a study and completed a design for supporting
micro processes in Catalyst. Current process enactment mechanisms, including
the one developed for Catalyst, focus on enacting standard, pre-planned
processes, such as the System Engineering Management Plan (SEMP) (e.g.,
establish configuration management), Project Planning (e.g., conduct the System
Design Review), and System Analysis (e.g., allocate system requirements). While
these "macro-process" enactment approaches are very useful, they are not
appropriate for smaller, more spontaneous processes common within
engineering teams (e.g., to accomplish and coordinate a multi-disciplinary
tradeoff analysis). Studies and interviews of system engineers' needs
accomplished under SECD identified that significant portions of time are spent
assigning, coordinating, and monitoring these "micro-processes."

Modus Operandi documented how a micro-process definition and enactment
capability could be created in Catalyst. The document also discussed the
differences between micro- and macro- processes, how micro-processes could be
supported using the current Catalyst framework, how micro- and macro-
processes could be integrated together, and some risk abatement tasks that could
be performed when attempting to implement the proposed micro-process
capability. More information on this study is available in the ASEA Interim
Technical Report, Volume 6, Catalyst Micro-Process Study.

3.1.9 Catalyst Security Study ECP

As part of the Security Study/Micro Process ECP, Odyssey Research Associates
performed a study of CORBA security and how security could be implemented
in Catalyst. They found that the CORBA Security Service specification provided
a great deal of flexibility in implementing security policies for CORBA systems.

The CORBA Security Service is essentially a specification that defines where
hooks must be placed in CORBA systems. These hooks are calls to a security
manager that must decide whether or not to allow an operation. Hooks are
placed for sending messages to objects, creating objects, deleting objects,

24

manipulating servers, etc. The specification defines when these hooks must be
called, but it does not specify what processing should be done or how to make
the decision to allow/not allow the operation.

A security policy is actually implemented in CORBA by a) writing code to plug
into the hooks, and b) making the decision whether or not to allow operations.
The idea behind the specification is that no one security policy is going to satisfy
all the potential uses for CORBA. It is better to allow security policies to be
customized by the application writers rather than dictating how it should work.
We determined that COTS solutions for various security policies would be
supplied by vendors. Application developers for CORBA would then select a
COTS security package that met their needs and plug it in.

In retrospect, this is actually what happened. There are now COTS CORBA
security packages available, the first from Concept Five technologies. For some
Catalyst users, it may make sense to use one of these packages to control access
to Catalyst objects. In practice, most Catalyst users with security requirements
rely heavily on physical security to protect their projects. ORA ultimately stated
that implementing multilevel security in Catalyst would cost many times more
than the rest of the project and would take many years to gain NSA approval.
Even with a large investment of time and money, there would still be
considerable risk that acheiving this level of security would not be successful.

Modus Operandi recommends using physical security to protect classified
information stored in Catalyst. This is not only much less expensive, but it is also
much more secure than relying on a computer-based security solution. Using a
COTS CORBA security product may add value in terms of helping groups of
people work together without accidentally deleting or changing each other's
work. Catalyst already provides the locking mechanism to address the majority
of groupware concerns, but a COTS package may provide different levels of
access or more flexible control.

3.1.10 Northrop Grumman Demonstration ECP

The ASEA contract was modified to include the integration of ORACLE and
RDD-100 and the creation of a Catalyst demonstration based on Joint STARS.
The ORACLE and RDD-100 integrations are described in Section 3.3.4 and 3.3.5,
respectively. The demonstration was created and presented at the ASEA final
delivery in November of 1997.

3.2 Catalyst Software

This section describes each software component of Catalyst. The architecture,
design motivations, history, purpose and construction time are described as
appropriate.

Catalyst software required about four calendar years to develop. During
development, the team ranged in size from one person to five full time

25

programmers. Several Catalyst team members left and several new members
joined the team. John Faure, the team leader and chief architect was the only
member of the team present from the start of the development through the final
delivery. The exact number of man months spent strictly on the development of
the software is very difficult to estimate because the ASEA project also required
the development of over one hundred documents and reports, several thousand
PowerPoint slides, three software builds - each with four review meetings, four
ECPs, and many subcontractors to meet with and manage. The entire ASEA
effort consisted of about 30 man-years of effort for Modus Operandi.

3.2.1 Catalyst Core IDL

The Catalyst Core IDL is the heart of the Catalyst integration framework. This
section explains the purpose of each of its parts.

Catalyst integrates data sources such as databases and tools by "wrapping" them
with a standard interface. This standard interface allows the implementation of
many beneficial generic operations, such as browsing, reading, writing, moving,
and analyzing data. The Catalyst Core IDL defines the standard interface used
by Catalyst for accessing objects, attributes, and schema information. It defines
the interface for standard factories used to create object instances. Most of the
types used by the Catalyst GRM IDL are defined in the Catalyst Core IDL, since
both interfaces use them. One of the most basic properties of Catalyst as an
integration framework is the presence of standard protocols for framework
operations. Requiring even one special case for accessing objects or relationships
would double the size of the object access code and seriously compromise the
principles of Catalyst.

3.2.2 Catalyst Objects

The Catalyst Core IDL is organized as a series of type and interface declarations
that collect related functionality. The interfaces specify the standard Catalyst
protocols. They are not meant to be implemented on their own; they are
essentially virtual interfaces that should be inherited by the CORBA servers that
integrate the data sourced into Catalyst. Standard Catalyst code sections are
available to reduce the effort needed to implement the standard interfaces and
thus to integrate a new data source.

To tightly integrate a data source into Catalyst requires creating a CORBA server
for each class in the data source. The IDL for this CORBA server must inherit at
least the ObjectAccess interface. The CORBA server should also inherit the
Notification interface if the data source or its integration can benefit from
notification of external events.

If the data source being integrated stores relationships between the objects it
manages, then the RelationAccess interface should also be inherited. Relations
have a query object flag that indicates to the GRM whether or not it should ask
the object servers for relationships. If a data source stores relationships internally

26

and implements the RelationAccess interface, then the query object flag on those
relationships should be set to true. This will cause the GRM to query the object
server for relationships and then add those relationships the GRM itself stores,
and return the combined list to the requestor.

One principle of the CORBA architecture is that for each class defined by IDL
interfaces, there must be at least one server program in existence before any
objects of that class can be created and manipulated. Server programs exist to
handle the method calls defined in IDL interfaces. Servers are programs written
in C++, Java, Smalltalk, etc. which usually must be compiled and linked before
they can be used. This makes creating a new class in Catalyst a fairly significant
operation. To create a new class requires creating, compiling, linking, and
registering the server with CORBA.

This principle makes CORBA data models much more static than systems like
relational databases, where new tables can be created using a single SQL
statement. This makes it even more important to carefully design the object
schema for the data to be represented. Work has been done in the CORBA
community for dynamically creating server implementations. This may make it
possible to someday automate the process of creating server classes for certain
types of servers.

In Catalyst, the process of creating a class that is stored by Catalyst has already
been automated. The source code for the class is generated by a program. The
program reads a definition file created by the user that describes the class name,
and its attributes and their data types. The generated code is compiled and
linked using a makefile that is supplied. The whole process takes about 5
minutes for the compilation and linking. The data for the class is transparently
stored in ObjectStore. The ObjectStore implementation has proven to be very
reliable over the four years in which Catalyst has been operational.

The following is an outline of the Catalyst Core IDL module:

module Catalyst {

object types...

interface ObjectAccess...

notification types...

interface Notification...

relation types...

interface RelationAccess...

interface Factory.

};

The ObjectAccess interface provides a standard protocol for unique object
identification, a capability that was not included in the CORBA specification, on

27

the grounds that it seriously limits the implementation choices for various ORB
operations. CORBA ObjRefs are many-to-one with Objects, which means many
different ObjRef values can denote the same object. This characteristic prevents
ObjRefs from being used as the basis for general relationships. In Catalyst, the
unique identifiers provided by the ObjectAccess interface are used to create and
use relationships. Catalyst identifiers are also used to build object structures
such as lists, search trees, etc., where object identity is important.

The ObjectAccess interface uses an object identification strategy that is low cost
and reliably unique. A standard include file provides operations for creating and
comparing unique identifiers, reducing server implementation cost and
increasing Catalyst uniformity.

The ObjectAccess interface also provides a method for retrieving the name of an
object's class, which is crucial information for performing generic browsing,
analysis, etc. A method for returning a display "image" that concisely represents
the object is included to support generic browsing and navigation. The display
"image" is essentially a standard human readable identification protocol,
although the display string does not have to be unique. This "image" capability
is very important for creating efficient object browsers and navigators.

The ObjectAccess interface contains a method that returns the standard attributes
of an object in one operation. These items, in concert with the object's ObjRef, are
the most important and commonly used attributes in Catalyst. Because
distributed message calls are on the order of milliseconds, providing one method
to retrieve them all at once substantially improves the performance of the
framework for a minimal implementation effort.

The ObjectAccess interface also supports more detailed levels of access to an
object. A method is provided for retrieving the attribute definitions for an object.
The attribute definitions retrieved from an object of a certain class apply equally
to all objects of the same class. If CORBA had the equivalent of class objects, this
operation would be supported by the class object and not by all the instance
objects. The interface also defines a standard protocol for getting and setting
attribute values. These capabilities are necessary to support generic browsing,
editing, forms display and editing, import/export, etc.

The Notification interface provides a standard protocol for informing objects of
the occurrence of events. Notifying objects of events is a powerful and important
technique for implementing semantics in the object model, maintaining the
consistency of the data, and reducing the amount of custom code needed to
implement framework and application operations. Normally, the object being
notified is the range of some relationship, and the notifier is the domain of the
same relationship, as will be explained below in the discussion of relations.

The RelationAccess interface provides a way to retrieve the relations defined for
a class. It also provides ways to retrieve, create and delete relationships between
objects. This interface should be inherited by servers for data sources that

28

internally store relationships between the objects they manage. Inheriting and
implementing this interface will give Catalyst access to these relationships.

The General Relation Manager architecture supports relationship operations for
objects whose servers do not implement the RelationAccess interface. It also
provides the capability for establishing relations and relationships between
objects stored by different servers. All relation operations are performed by
calling the General Relation Manager, which takes care of calling the
RelationAccess interfaces of the object servers as necessary.

The Factory interface is used to create instances of the class. The Factory also
contains operations for returning schema information. All object servers must
inherit the Factory interface. The create operation returns the instance as an
ObjectAccess object. This supports generic code that can create instances of any
Catalyst class, which is a very important capability for tools such as generic
browsers and editors, and for importing, exporting, versioning, baselining, etc.

The Catalyst ObjectAccess interface defines the simplest level of integration with
the Catalyst system. The ObjectAccess module requires the existence of three
standard attributes that all Catalyst objects must possess. These three standard
attributes are class (class name string), image, and unid (unique identifier). The
standard attributes support the minimum capabilities thought necessary for a
useful integration: to identify an object and be able to relate it to other objects
(unid), to classify an object (class), and to display or print a descriptive string for
an object (image).

All objects in Catalyst must support a set of standard attributes. These attributes
were defined to provide a standard protocol for accessing important
characteristics of objects. A few were defined as specified by Catalyst
requirements. The standard attributes must be defined in the order and with the
type, mode and size definitions specified in Table 3.2.2-1.

Defining standard attributes improves the consistency and uniformity of Catalyst
client tools and object servers. They reduce the development effort and run time
required by client tools by making the standard attributes consistently and easily
accessible. The standard attributes are important to any client tool or object
server because they define crucial object information; making them readily
accessible is very important. Because the standard attributes already require
special attention in an object server implementation, the effort required to adhere
to this convention in object servers will be small.

Table 3.2.2-1 Catalyst Standard Attributes

name type mode size in bytes

class adt_string read_only 32

unid adt_unid read_only 20

29

image adt_string read_write 0

baseline adt_string read_only 8

lockedjby adt_string read_only 32

created adt_time read_only 8 (from gettimeofday)

modified adt_time read_only 8 (from gettimeofday)

mod_count adt_long read_only 4

3.2.3 Catalyst Relations

In Catalyst, the term relation refers to the existence of the definition of a
connection between objects (i.e., the meta-information), while the term
relationship refers to the existence of a connection between existing objects (i.e., an
instance of a relation). Relations in Catalyst define a connection between two
objects of different classes, or connect objects of one class to each other. New
relation types may be defined at run-time. This capability is supported by the
Catalyst General Relation Manager.

Relations are named using the form <domain class> <relator> <range classx
The primary direction is from the domain class to the range class. The inverse
direction is from the range class to the domain class. The inverse is named using
the form <range class> <inverse> <domain classx An example relation name is
"Document contains Section". The inverse name for this relation might be
"Section contained_by Document".

Catalyst relations are typed. To successfully create a relationship using a
particular relation, the domain object must be an instance of the domain class and
the range object must be an instance of the range class. Catalyst will reject
relationships where these conditions are not true. Catalyst will also reject trivial
relationships, which are those in which the domain and range are the same
object.

Relations are bi-directional, and have a primary direction and an inverse
direction. The direction of the relation is very important to the meaning of the
relation. Catalyst maintains the bi-directionality of relationships automatically.
If one direction is created, the other direction is automatically created. If one
direction is deleted, the other direction is automatically deleted. Relationships
may be followed in either the forward or inverse direction by specifying the
relation name using the forward or inverse name.

Catalyst enforces set semantics on all relations. This means that there can only be
one instance of a particular relation between two objects. If the relationship is
created more than once, the creation operations after the first one have no effect.
There may be many relationships between the same two objects as long as they
are of different relations. This is an important point because it means two objects
are either related by a relation or they are not. There is no degree to being

30

related. If such a capability was required it can be implemented by using an
object between the related ones that stored the degree. N-ary relations can be
implemented in a similar fashion.

Recursive relations are those in which the domain class and the range class are the
same. For example, Component decomposes_into Component. The inverse of the
this relation might be Component decomposes_from Component. This relation
forms a recursive hierarchy that can be any number of levels deep. To go down
the relation, specify Component decomposes_into Component (the forward
relation name). To go back up the hierarchy, specify Component
decomposes_from Component (the inverse relation name). Using the forward
and inverse names allows one to travel up or down the recursive hierarchy at will.

Using this relation, Componentl could be related to Component2 (this is the
forward direction), and Component2 could be related to Componentl (this is
also the forward direction). This forms a two object cycle that is legal and could
be traversed from object to object in both the forward and inverse directions.
This set of relationships do not violate the one relationship between objects rule
because the relationship direction is different. This makes the two relationships
completely different as far as Catalyst is concerned.

Relations have one of four cardinalities: one-to-one, one-to-many, many-to-one,
and many-to-many. The cardinality determines what combinations of
relationships may be established between a group of domain and range objects.

• A relation whose cardinality is one-to-one specifies that each object may be the
domain of no more than one instance of the relation, and that each object may
be the range of no more than one instance.

• A relation whose cardinality is one-to-many specifies that each object may be the
domain of zero or more instances of the relation. However, each object may be
the range of no more than one instance.

• A relation whose cardinality is many-to-one specifies that each object may be the
domain of no more than one instance of the relation. However, each object
may be the range of zero or more instances.

• A relation whose cardinality is many-to-many specifies that there is no
restriction on an object's participation in the relation.

Cardinality in Catalyst has never been enforced due to performance penalties
with the current implementation. Their enforcement could be implemented in a
more efficient manner in the future. Currently, cardinality information provides
information about the meaning and intent of the object schema but is not
guaranteed to be followed.

3.2.4 Relation Semantics

Relations in Catalyst may possess one or more of a set of well-defined semantics
that are part of the basic Catalyst data model. In addition, a relation may possess

31

application-defined semantics, which may be added at any time. It is important
to keep in mind that relations are meta-information so that their characteristics
(or modifications of those characteristics) apply immediately to all instances of
the relation.

A "hook" has been provided to allow Catalyst user applications to define their
own semantics information. This has been implemented as a long word
(appl_semantics) that is maintained by Catalyst for each relation. This provides
up to 32 separate semantics flags for other user-defined purposes. All semantics
are meta-level information, so user-defined semantics are defined on the relation
and apply to all instances (relationships) of the relation.

Catalyst relation semantics were defined to support implementation of event-
driven operations across networks of objects. Using traditional algorithms to
support these types of operations is usually very difficult, so event-driven or
access-oriented algorithms based on notifications have become common in
object-oriented systems.

An example operation is the deletion of an object and all the objects that are
logically "part" of the object. This forms a hierarchical network of objects, in
which the top level object may be a car, the next level may be the engine, tires,
seats, body, and the next level engine parts, etc. To delete the car using a
traditional algorithm would require writing a series of nested loops that traverse
the various relationships forming the hierarchy. If a new relation was added
from any part to any new part, such as "Engine contains CatalyticConverter" a
new loop would have to be added to traverse this relationship and delete any
CatalyticConverters that were part of the car.

Using semantics, each part of the car would be related to the car using a
relationship with parts semantics. Deleting the car would cause each part related
directly to the car to be deleted. As these parts were deleted it would trigger
notification messages to the subparts. This process would continue recursively
until all the car's parts and subparts and subsubparts, etc. were deleted. If a
CatalyticConverter was added in the future, it would automatically get deleted,
as long as it was connected to the car with a relationship that had parts semantics.
All the user has to do to delete the car is send it a delete message, Catalyst
semantics take care of the rest.

This simple example demonstrates how semantics can be used to create very
resilient and flexible capabilities with minimal effort. The work required to carry
out the applications is distributed throughout the servers and the GRM.

Semantics are implemented in Catalyst partly by the GRM and partly by the
object servers. When something happens to an object that could affect semantics,
the object server is responsible for telling the GRM that it happened. The GRM
then determines what objects are related to the affected object, and what
notifications should be sent to them. The notified objects may take some further

32

action that they would inform the GRM about. The process continues until all
the affects have been propagated to all the objects that need to be informed.

The GRM and object servers must be implemented carefully to avoid any
deadlocks or erroneous actions that can be caused by the propagation of
semantics notifications. This turns out to be fairly easy, as long as the following
principle is followed: no server (including the GRM) should make any
distributed calls while holding any resource locks. If this principle is not
followed, it is inevitable that one of the distributed calls will eventually call the
original object and deadlock with itself on the locked resources. This is
particularly true of the GRM. If the GRM makes any distributed calls while
holding locks, it is almost guaranteed that those calls will deadlock in the GRM
before long.

To conform to the principle requires using the following processing strategy.
First, acquire the locks needed, and while the locks are in place do any
processing required, such as changing the object or relationship state. Second,
while still holding the locks, collect the list of other objects that might be affected
by this action. Third, release the locks. At this point, no changes can be made
that affect the object or relationships state. Make the distributed calls to the list
that was collected. This simple strategy has proven itself to be effective and
deadlock-free for several years of operation.

The Catalyst built-in semantics value, existence, and parts are implemented partly
within the GRM. When the state of an object is modified, the object server is
required to notify the GRM using the objectjnodified method. This method finds
all objects related to the modified object by relations with value semantics. The
GRM then sends each of these objects an object modified notification, which
includes the object reference and unique identifier of the object that was modified.

When an object is about to be deleted, but before the deletion takes place, the
object server is required to notify the GRM using the object_deleted method. The
GRM then finds the list of all objects related to the object to be deleted by
relations with existence semantics. The GRM sends each of these objects an object
deleted notification, which includes the object reference and unique identifier of
the object to be deleted. These notifications are sent before the object is deleted,
and with the object in an unlocked state, so that other objects that are informed
that it is about to be deleted can communicate with the object before its demise.
This is important for maintaining the consistency of complex object networks.
Before an object leaves the network, other objects can talk to it and then update
themselves appropriately. For example, an object maintaining a sum might
subtract the value of the deleted object from the sum, rather than requerying all
the objects and computing a new sum. Once the object deleted call to the GRM
returns, the object can delete itself.

A second action taken by the GRM when it receives an object deleted message is to
handle parts semantics. Existence semantics are always handled before parts
semantics. To handle parts semantics, the GRM finds the list of all objects related

33

to the deleted object by relations with parts semantics. The GRM then deletes
each of the objects related by parts semantics. This can trigger a wave of
existence notifications and further parts semantics processing as subparts and
subsubparts are deleted. The GRM has been constructed to handle these
conditions correctly and without deadlocking. Parts semantics are used in the
Process Enactor and Administration tools to delete old processes and their parts
from projects.

The built-in semantics in Catalyst propagate through object networks in a
synchronous fashion. This means that if an object is modified and it sends an
object modified message to the GRM, the message will not return until all the
notifications to all the objects have been sent out. Since this may trigger many
levels of notifications through a hierarchy of objects, this can take some time to
occur. The rationale for using synchronous propagation instead of asynchronous
propagation is that the built-in semantics were designed to help support
maintaining the consistency of complex networks. This is much easier to design
and implement if notifications spread out synchronously. The object that was
modified knows that all the required changes to the object network have been
made before it continues processing after the object modified notification message
to the GRM returns. Many times, this is a valuable simplifying assumption.
User-defined semantics can be implemented to propagate either synchronously
or asycnhronously.

User-defined semantics can be implemented completely within the object servers
that are required to support them. This can be done as follows. When an object
receives a notification message that could trigger the user-defined semantics, the
object server should query the GRM for the list of objects related with
relationships that possess the user-defined semantic. The object server should
know or look up which relations possess the user-defined semantic, and use this
information to get the correct set of related objects from the GRM. The object
server can then send the appropriate notification message to each of the related
objects, or take the appropriate action on each of the related objects, such as
using one of the operations defined by the object. Implementors should follow
the deadlock avoidance algorithm outlined above to ensure the correct
processing of their semantics. Performance of user-defined semantics should be
comparable to the built-in semantics.

Catalyst defines a set of relation semantics that are not currently enforced or
checked. These semantics may be enforced or checked by later implementations
of Catalyst. These semantics serve several important purposes. They provide a
standard hook or interface for the existence of these semantics that can be used to
facilitate cooperation among different tools and servers that are interested in
them. This cooperation is enhanced by the existence of a standard mechanism
for storing and accessing them. They also provide information about the
meaning and intent of the object schema to be used by people wishing to
understand the schema, and by automated tools processing the schema, such as
the Model Explainer from CoGenTex.

34

Catalyst defines acyclic relation semantics to mean that there is no path using only
relationships of the acyclic relation from any object back to that object.

Catalyst defines hierarchical relation semantics to mean that there are no objects in
a network that have more than one parent within a single network of objects
connected with the hierarchical relation.

Catalyst defines transitive relation semantics to mean that if a is related to b, and b
is related to c, then a is related to c, assuming all relationships are of the
transitive relation.

Catalyst defines commutative relation semantics to mean that if a is related to b,
then b is related to a.

3.2.5 Catalyst GRM IDL

The Catalyst General Relation Manager (GRM) IDL defines the interface to a
general purpose server for storing and managing relations and relationships in
Catalyst. This server stores relationships between objects in different servers,
and between objects in the same server when that server does not support
relationships. The GRM provides a unified source for all the relationships of an
object by adding together the relationships stored by the servers to the
relationships it stores itself. This allows client programs to see all the
relationships for an object with one call to the GRM and without having to know
where the various relationships are stored. Thus, the GRM provides important
integration and transparency services in the Catalyst integration framework.

The GRM IDL provides operations for finding, creating, modifying and deleting
relations. These operations support definition of the object schema.

The GRM IDL provides operations for retrieving, creating, deleting, locking, and
unlocking relationships between objects. Many of these operations work on
groups of relationships rather than a single relationship at a time. This improves
Catalyst efficiency because invoking operations on CORBA objects is fairly
expensive. Cutting down on object message traffic through grouping is a
significant savings. In the future, we may add an even more powerful grouping
operation for relationship retrieval that retrieves all objects related by a list of
relations instead of a single relation.

The GRM IDL provides the object created operation to inform the GRM when a
new object has been created. This is useful for making sure all objects are
registered in the GRM so that they can be looked up later by their unique
identifier. It is also used during autopublishing to enter an object so that its tool
key may be stored. Autopublishing is used by tight integrations to make data
visible in Catalyst and is discussed in Section 3.3.4.

The GRM IDL provides the object modified and object deleted operations to inform
the GRM when objects are modified or deleted. These operations are critical for
implementing built-in semantics.

35

The GRMIDL provides operations for storing, removing and looking up keys
that identify an object within an integrated tool. These operations were added to
the GRM to make it easier to write tight integrations. The GRM already stores
and indexes the information related to the object that was needed, with the
exception of the tool key, which was added.

The GRM IDL provides interfaces for exporting, importing, and debugging GRM
information. These interfaces are currently not used. Importing and exporting
the GRM contents to text files could be implemented to make upgrading the
GRM server easier.

3.2.6 General Relation Manager

Catalyst was initially designed about the same time the CORBA 1.2 specification
was approved by the Object Management Group (OMG). At that time, the
Relationship Service specification was approved. After careful analysis, it was
concluded that the current specification was not appropriate for implementing
an engineering integration framework. The Relationship Service Specification
states that up to three objects can be used to implement one relationship. There
are several advantages to using objects to implement relationships. It means that
any support, such as backup/restore, searching, etc. that applies to objects
immediately can be applied to relationships as well. Unfortunately, there is a
considerable performance penalty with this design, since objects are relatively
expensive in CORBA.

At the time Catalyst was being designed, Modus Operandi had a great deal of
experience in building object-oriented systems that made heavy use of
relationships. It was found that there were generally an order of magnitude
more relationships in such systems than there were objects. Relationships were
generally created and deleted much more frequently than objects, as well. This
placed time and size constraints on relationships that had to be met in order to
create a useable integrated system.

A much more lightweight implementation had to be created in order to meet the
expected performance constraints on relationships. For this reason, relationships
in Catalyst are not stored as objects. A special lightweight relationship service
was developed, based on the Catalyst Core and GRM IDLs. To store a single
object in CORBA requires somewhere around 3000 bytes and requires
approximately 100 ms to create or delete. By not storing relationships as objects,
the Catalyst GRM is able to use only 48 bytes per relationship and take about 1
ms to create or delete one. This architectural decision probably made the
difference between the current, very useable Catalyst system, and one that would
have been too slow and memory-intensive to be useful. Catalyst has been
optimized to handle many lightweight relationships in a LAN environment,
because this meets the performance requirements and the operational
requirements for most engineering development.

36

The current Catalyst General Relation Manager was written in C++. It is
essentially a custom database for storing relations and relationships. It uses
Solaris memory mapped files to provide very fast access to the disk files that
store its information. The current implementation can handle approximately 300
individual relationship operations per second. When relationship group
operations are performed, it can handle as many as 5000 relationship operations
per second.

The current implementation is not very portable because it relies on Solaris
memory mapped files. Other operating systems - such as other UNIX flavors
and Windows NT - provide similar features. The GRM could be implemented
using an object base such as ObjectStore or using a relational database such as
ORACLE. The performance of such an implementation is hard to forecast, but it
would probably be lower than that of the current implementation because it is
hard to manage disk interaction any more efficiently than it does.

3.2.7 Catalyst Object Servers

The Catalyst Object Servers are CORBA servers written in C++ that inherit and
implement the ObjectAccess, Factory, and Notification interfaces from the
Catalyst Core IDL. These servers were created to store objects of classes that
were not stored by any integrated tool. Any time an object class was needed and
there was no tool to store it, a Catalyst Object Server was created for it. This
includes all the classes needed to support process enactment, impact analysis,
and project modeling.

The Catalyst Object Servers use the Object Development Framework (ODF)
facilities provided by NEO to store their object data persistently in ObjectStore
databases. This persistence capability is bundled with NEO, which saved a lot of
development time and provided a high-quality persistence capability. The
ObjectStore databases provide transactions and database recovery after failures.

The Catalyst Object Servers are actually generated by a C++ program. This
program takes a definition file that describes the attribute names, modes, types,
and sizes and generates the IDL, DDL, and C++ files needed for the server. The
server is then compiled and registered with NEO and a new Catalyst object class
is available.

Generating the server code instead of writing it by hand saved an enormous
amount of repetitive coding. There were over 50 Catalyst Object Servers in
Catalyst at the time it was delivered.

Now that NEO is no longer supported, these servers will have to be ported to
VisiBroker, which does not come with any bundled persistence solution.
ObjectStore Persistence Pro will probably be used to provide object persistence,
since this technology has already been proven to work well in the current NEO
servers.

37

3.2.8 Catalyst Object Cache

The Catalyst Object Cache is a key part of the Catalyst architecture. It caches
CORBA objects and relationships in memory in a client application. Since the
objects and relationships are probably stored by a server in a remote machine,
this caching makes the client applications far more responsive to the user. The
object cache works by storing all objects, relationships and meta-data in memory
as they are accessed by the client application. The object cache retrieves data
from the servers when it is demanded by the client application. The caching is
totally transparent to the client. The object cache tries hard to minimize both the
amount of information sent across the network and the amount cached in
memory. Using the object cache, scrolling, screen redraws, data analysis, data
editing and any other operation which works on CORBA data can proceed at
memory speeds rather than the approximately four orders of magnitude slower
CORBA access speeds. Caching objects and relationships in memory creates
redundancy which must be carefully managed to avoid race conditions and other
data corruption problems. The architecture for the object cache is shown in
Figure 3.2.8-1.

3.2.8.1 Cache-to-Server Locking Policies

Catalyst uses object and relationship locking in the servers to prevent data race
conditions between multiple users. The locking model is based on a check-in,
check-out paradigm similar to configuration management tools familiar to most
engineers. Rather than enforce a single model of locking, Catalyst allows the
user to select the model which fits the activities they are performing.

Catalyst servers support a simple model of data locking, on top of which many
interesting client level locking models can be implemented. Catalyst server locks
associate a user identifier with each piece of locked data. Only the user holding
the lock may modify, delete, or unlock the data. Catalyst server locks last
without expiration until they are unlocked. This supports the long-term, multi-
session locking of work products necessary for modeling real-world work and
development practices.

38

User Interface Thread

^ ObjectViewList N
CtBrowserView

NDBrowserWidget
NDRootBrowserNode
RootObjRefPtr
RootObject
RelationList
FilterActiveFlag
ViewUpdateList
CurrentAnalysis

Cache Gateway Mutex

OcObjectCache
fGateway
fGRMObjRef
fLockingPolicy
fSavingPolicy ^ HashTable(name) <
fForwardRels.
flnverseRels
fClassDefs

OcUpdateList

OcCiassDef
fName
fObjectCache'
fObjectFactory
fAttrDefs
fAttrDefsLoaded
fRelDefsLoaded
fObjects
fForwarcfKels
flnverseRels

OcObject
fObjectState
fShadowList
fObjectCache
fClassDef
fObjectRef
fAttrValues
fRelShpLists"

[ObjectShadowList j

-(ObjRef""^

-^-fOcAttrValue h

OcRelShpList
fSummaryState
•fRelation
fRelShps

\
j.OcRelDef
\fDomain
\fRange

fRelator
flnverse
fCoreSemantics
fCardinality

OcRelShp
fRelShpState
fDomain
fRelated

Figure 3.2.8-1 Catalyst Object Cache Architecture

39

The object cache supports three locking policies at the client level. The current
policy in effect may be selected by the user or the application. Each policy has
advantages and disadvantages which make it appropriate for certain types of
usage patterns or situations. The locking policies are:

(a) No Locking

(b) Just In Time Locking

(c) User Directed Locking

Policy (a) no locking, is the weakest type of locking, and runs the greatest risk of
race conditions, and failures to write. A failure to write occurs when the user has
modified data in the cache, but the modifications can not be written to the server
because another user has the data locked. This policy is the easiest to use and
also the most efficient to execute because nothing is ever locked. This locking
mode may be appropriate when little or no chance of conflicts exists (i.e. no other
clients have either visibility or write access to the data), or when a small number
of minor changes needs to be made. When shared server data must be accessed,
this is a poor choice.

Policy (b) just in time locking, is safer than no locking and is usually faster than
user directed locking. Under this policy, the object cache will attempt to lock
data just before modifying it. Once locked, the data will remain locked until
unlocked by the user or application. Using this policy, only data which is
actually modified is locked; data which is only read is never locked. The
drawbacks of this approach are that there is a chance that race-conditions or
failures to write may occur. This policy is not implemented in the current object
cache. It could be implemented in about two weeks of effort.

Policy (c) user directed locking, is the strongest locking policy, providing the
greatest protection but also the greatest costs. Under this policy, a subset of the
object network is identified by the user or application and each data item in it is
locked, prior to any modifications being made. Once the entire subset has been
locked, the user or application is free to make any modifications they want with
confidence that there will be no race-conditions or failures to write when the
modifications are saved. This is probably the most useful locking policy when a
large number of changes will be made to shared server data.

The user directed locking policy can be used very naturally to mimic the way in
which groups of people currently collaborate to create shared work products.
Each person is assigned a subset of the overall work product, which may be a
document, requirements network, design hierarchy, or any other subsettable
object network. Each person then uses their applications or the object browser to
lock their assigned subset. The work group can then proceed to cooperate on
building the total work product without the possibility of race-conditions or
failures to write.

40

Acquiring the locks under the user directed locking policy should be assisted by
the application or object browser. It should be both easy and logical to specify
what parts of the object network to lock. The user should not have to enumerate
what to lock or unlock manually. For example, in a document editor the user
would request that a document section be locked, and the document editor
would automatically lock all the (possibly) many objects making up the section.
Another example would be a requirements editor locking all requirements in
hierarchy starting at a user selected object. The requirements editor would
automate the necessary tree traversal and locking. The most general way to
acquire locks under this policy would be to use the object browser. This tool will
provide several types of general traversals and searches which can be used to
identify and lock or unlock any selection of the object network.

Because Catalyst server locks last until they are unlocked, the enforced division
of the object network under this policy can remain in place for days or weeks or
until the overall work product is completed. Management and modification of
who has what parts locked may be necessary at times during the work process
creation. This reflects the natural changing of the logical ownership of parts of
the work product as its creation proceeds, or as the work products flow through
their lifecycles.

3.2.8.2 Cache-to-Server Saving Policies

Orthogonal to the issue of how to lock and unlock data is the issue of when to
write modified data from the cache back to the object servers. The Catalyst client
architecture defines two data saving policies. Like the locking policy, the current
policy in effect may be selected by the user or application. The saving policies are
named:

(a) Immediate Saving (Write Through Cache)

(b) User Directed Saving (Write Back Cache)

Policy (a), immediate saving, causes all data modifications to be written to
Catalyst servers as soon as the modifications are made. This policy is similar to
the write through cache policy used in some computer architectures. This policy
makes client changes visible to the rest of the network as soon as possible. It also
allows active object networks to propagate changes in the order in which
changes were made. For locking policies in which failures to write are possible,
this saving policy alerts the user to the failure as soon as possible. The
drawbacks of this policy are that the user must wait for each save operation to
complete, and that if multiple changes are made to the same object, the cost of
saving it to the server must be paid each time.

Because of its immediate feedback on failures, this saving policy is a good choice
when the no locking or just in time locking policies are used.

Policy (b), user directed saving, keeps track of cache modifications and saves
them only when directed by the user. This policy is somewhat like the write back

41

cache policy used in some computer architectures, except that the user has the
option to discard changes without ever saving them. One major advantage of
this policy is that the cache data may be modified freely at memory speeds
without ever having to wait for the Catalyst servers. The main purpose of the
object cache is to allow applications to run at memory speeds most of the time,
only having to pause infrequently to load or save data. Another advantage is
that the user can save data when it is in a consistent state, rather than
incrementally. This may be very important when many other clients are reading
and using the data. A final advantage is that multiple changes to the same data
only have to be saved once, improving both client and server performance.

Using the user directed saving policy allows the user to collect and work on a
network of data, and save it only when they feel it is consistent or complete.
Should they decide that their modifications are incorrect, the entire object cache
can be unlocked and discarded, essentially a powerful undo capability at the
object network or working set level.

Switching saving policies from (a) to (b) causes the cache to begin accumulating
changes rather than immediately saving them. Switching saving policies from
(b) to (a) causes all pending changes to be written back, and then all subsequent
changes to be written immediately.

3.2.8.3 Cache Loading and Swapping

The object cache is loaded with objects, relationships and meta-data
incrementally, as needed by the activity of the client application. Objects and
relationships are brought into memory transparently, when accessed by the
client application. The goal of the object cache is for it to appear to the client
application as if all objects and relationships are available in memory at all times.
In actuality, the object cache retains in memory all objects and relationships
accessed by the client application until the upper limit on total cached objects is
reached. At this time, objects will be swapped out on a least recently used basis,
to make room for incoming objects. When an object is swapped, all its
relationships are swapped out as well.

Initially the object cache contains no meta or instance data. It is "primed" with
one or more calls to functions which supply the CORBA stringified object
reference or naming context path to an object. The object cache obtains a
connection to the actual CORBA object in its object server and uses the Catalyst
Core IDL to obtain meta and instance information about it. The object's unid
(Catalyst unique identifier), display image, and class name are retrieved. The
names and definitions of the class's attributes are retrieved and stored in a class
definition object (OcClassDef). The relations defined for the class are retrieved
and stored in relation definition objects (OcRelDef). All this meta information is
indexed by the object cache (OcObjectCache). The Catalyst Core IDL contains
methods for retrieving meta-information from object instances, because CORBA
is a one-level object oriented system, and therefore has no meta-objects to ask for
meta-information.

42

Next, the client application will request additional objects by retrieving
relationships belonging to the "priming" objects. These requests cause the object
cache to retrieve and store the relationships for the priming objects. At the other
end of each relationship is a new object, which is cached and interrogated the
same way the priming objects were. Thus new meta-data in the form of class and
relation definitions can be discovered and stored. When objects of existing
classes are found, then no meta-data operations are performed; this work is
always done when the first object of a new class is found.

Over time, a working set of meta and instance data has been loaded into the
cache, decreasing the server traffic to an occasional access when a new object is
encountered. The typical Catalyst client tool session will be slightly slower at
first as the working set is built up, then should proceed faster as all the working
set objects are cached in memory. The client tool will slow again when new areas
of the Catalyst object network are loaded or when cache saves are performed.
This adaptive behavior will optimize client tool performance by automatically
tuning cache contents to the user's actions.

3.2.8.4 Cached Object Structure and Swapping

When the number of objects in the cache passes a limit, then objects are swapped
out to make room for new ones. An object in the cache consists of four parts.
Only pointers to OcObject objects are visible outside the object cache. These are
essentially handles to the cached object information. The OcObject object
contains pointers to the other three parts of a cached object. The fData pointer is
a link to the object's attribute and relationship data. The fObjRef pointer is a link
to the CORBA object reference used to talk to the actual server object. The
fShadowList pointer is a link to the list of OcObjectShadow objects which
maintain connectivity with the views currently displaying the object.

The capability for swapping out data has been built into the current object cache
implementation, however the code for checking for "object overflow" and for
actually swapping objects out was never implemented. Even with thousands of
objects in the cache there was never a problem with running out of memory.
This may change when Java or PC based clients are used. The swapping out
capability could be implemented in two weeks of engineering effort.

Because OcObjects are pointed to directly by many data structures and threads,
destroying them would be very complex, if not impossible to perform reliably.
In fact, destroying an OcObject would require synchronizing all threads with
pointers to it on the object's imminent destruction, which would be very costly in
programming and execution time. OcObjects are therefore never destroyed.
When an object is server deleted by the user, all three pointers in OcObject are set
to null. This indicates to all data structures and threads pointing to the object
that it has been server deleted. The OcObject has become a "tombstone"
indicating that the object is deleted, preventing access to deallocated memory
and other memory management problems. Because OcObjects are only 12 bytes
in size, having even 10,000 tombstones in existence would not be a serious

43

problem, and it is unlikely that any one application session will result in server
deleting this many objects. Using tombstones to safely delete thread shared
memory was a key design technique which helped make Catalyst clients very
reliable.

When an object is swapped out, its CORBA object reference (fObjRef) is retained,
because without it there is no way to ever swap in the object again. The object's
shadow list (fShadowList) is also retained, because this information can not be
reconstructed from the object server. As would be expected in a distributed
system, the object servers are not aware of shadows or views.

When an object is swapped out, its attribute values and relationships are freed so
this memory may be used to store other objects. (The memory is returned to the
operating system rather than being pooled by the object cache). If the swapped
object is accessed again in the future, the object cache detects this fact by noticing
that its data pointer (fData) is null. It then uses the object reference it retained
(fObjRef) and rereads the object's data from its server using the Core IDL. The
process of rereading an object which was swapped out is called an object fault,
and is analagous to a page fault. Object swapping and faulting are done
transparently to the object cache caller. To the user of the object cache it should
appear as if all meta and instance objects reachable from the priming objects are
in memory all the time.

3.2.8.5 Class and Relation Definition Swapping

Class and relation definition objects are never swapped out. This is because they
are small in size, few in number, and very interconnected to the rest of the cache.
Swapping out a class definition would require swapping out all instances of the
class and their relationships, and all relation definitions that class participates in.
The effort required to swap a class definition out would therefore be very high
and would only yield a small number of free bytes (in the class definition object
itself) for reuse. Swapping a relation definition has similar complications and
yields a similarly small payoff in free bytes. Because of these considerations,
once a class or relation definition has been cached, it remains in memory as long
as the client tool runs.

Understanding relationship swapping requires knowing a few facts about
Catalyst relationships and how they are cached. Relationships in Catalyst are bi-
directional. A domain object is connected to a range object by the forward
direction of the relationship. A range object is connected to a domain object by
the inverse direction of the relationship. Each object stores one direction of all
the relationships it has with other objects. The related objects store the other
direction. In essence, the object stores the links from it to the other objects its
related to, and the other objects store the link from themselves back to the
original object. This forms a complete bi-directional link.

The implementation of this is as follows. Each object keeps a list of all the range
objects for those relationships in which the object is the domain. This is called

44

the forward list. Each object also keeps a list of all the domain objects for those
relationships in which the object is the range. This is called the inverse list. Note
that the relationships stored by the forward and inverse lists of one object are
completely different. Each forward and inverse list stores half of a relationship.
The other half is stored by the related objects.

3.2.8.6 Data ownership and sharing

Data ownership and sharing are very important concepts in a multi-threaded
system where data flows between threads. In the object cache and Catalyst client
architecture, the transfer of ownership of dynamic data is carefully documented
whenever data may flow from one thread to another. This is complicated by the
passing of certain lists of data because the ownership and status of the list
structure may be different than that of the list contents.

All dynamically allocated data is classified as either thread shared or thread
private. Each piece of thread private data is owned by one and only one thread.
Only the thread which owns a piece of thread private data may access that data,
or have a pointer to it. No other threads may access that data in any way. The
owner of thread private data is responsible for deallocating it.

Thread shared data is jointly owned by all the threads which have a pointer to it.
In the Catalyst client architecture, all thread shared data has a mutex lock
associated with it which protects it from simultaneous access. The data may
have its own mutex lock, or it may protected by the object cache Gateway mutex.
Thread shared data may be accessed by a thread only when the thread is holding
that data's mutex lock. If a thread is not holding the mutex lock, then that thread
may not access the thread shared data in any way, other than by storing, passing
or copying the pointer to it.

All thread shared data in the Catalyst client architecture has been carefully
identified and designed, and is therefore always a well known part of the design.
This is significant because it means that local variables and temporary data
structures are never thread shared.

Thread shared data may be deallocated only when just one thread has a pointer
to it. In the Catalyst client architecture, this can happen only when the user
interface thread knows that all the other threads accessing a piece of thread
shared data have terminated. At this time, it is safe for the user interface thread
to deallocate the thread shared data, which may be the object cache, message
queues, or result lists. During normal client application operation, thread shared
data is never deallocated, because many threads are accessing it. Because of its
role in coordinating the operation of the client tool, only the user interface thread
will ever deallocate any of the thread shared data, because only it will know
when it is safe to do so.

Extreme care must be taken in all coding not to accidently deallocate thread
shared data, or to access it without locking the mutex. These programming
errors are very difficult to track down, and cause failures which are not always

45

repeatable. Class interfaces where data is transferee! between threads carefully
document the status and ownership of each parameter after each operation.

Data flow between threads accessing the object cache is often accomplished by
the transfer of ownership of thread private data in the course of an object cache
call. For example, the user interface thread may receive ownership of a thread
private list of data which was created by the object cache. Usually this kind of
ownership transfer involves creating new lists or copies of data by one thread or
the other so that its ownership may be transfered and therefore be considered
thread private. Thread private data is desirable because the owner of the data
may access it freely without locking or holding any mutexes, increasing
concurrency. To continue the example, the user interface thread can unlock the
Gateway mutex after receiving the list of data and continue to safely use that
data. The down side of this type of transfer is that it requires time and memory
to make the copies.

An additional facet to the problem is that often the status of a list of data is
different than the status of the list contents. For example, calling
OcClassDef::GetRelDefs returns a list of relation definition objects (OcRelDef)
which belong to a class definition. The list returned is a new one created by the
OcClassDef object, and it is thread private and owned by the caller after the call.
The list contains pointers to OcRelDef objects which are thread shared and
owned by the object cache. The caller may do anything they wish with the list
object, however, they can only access the OcRelDef objects when they have
Gateway mutex locked.

An effort has been made in the object cache design to balance the efficiency of
thread shared data with the concurrency of thread private data. In addition, the
status of all parameters of interfaces which may cross thread boundaries has
been carefully documented to ensure that there is no question about who owns
what data, who has to deallocate it, and whether mutexes need to be locked in
order to access each part of it.

Care must be taken to deallocate lists correctly. When the list and its contents are
thread private, then the list structure and its contents must be deallocated. When
the list is thread private but the contents are thread shared, then the list structure
must be deallocated without deallocating the contents.

3.2.9 Catalyst Browser

The Catalyst Browser is a client tool implemented in C++. The Browser was the
first graphical Catalyst tool created, and it has undergone many changes and
enhancements over its lifetime. It is difficult to estimate, but somewhere
between 2 and 3 man-years have been spent on its construction and maintenance.

46

Browser r • View

Browser

Object - '•■ Locking ^ Bookmarks Windows Help

-Main Browser-

JSV55RFQ-infl.7nRt«ilRrilmn«i

l^YSRFQ-inp.l.rt Change Imnl"

ISYSRFQ-mg.7.a Detailed ImJ

fr$YSREQ-l03,2,1} Detailed ImJ

ISYSRFQ-inq.?.c Detailed Imrl

l^RFQ-IWiri Periled Imd

ly^RFff-ms.g.BPBtailBrilnnd

ISYSRFQ-1 ns.?.f Retailed Innnl

WsRFQ-inP.?n Detailed Innrl

, ^SYfSRFQ-inn.3.almnantAs^l
iSVSRFQ-mfl.3 Imnact Asse<K

xISVSRFQ-ina.3.hlmnatf Assl

 /JsvsRFQ-infl-4,aChflnHeE?d

Figure 3.2.9-1. Catalyst Browser Tool

The Browser allows the user to graphically navigate and view any object,
attribute, or relationship in Catalyst. The Browser also allows objects and
relationships to be created, deleted, modified, locked and unlocked. The
Browser is very useful for researching parts of a system being developed. It
allows the user to look at data in many integrated tools without knowing how to
operate any of the tools. The Browser is often used in conjunction with other
Catalyst tools.

3.2.10 Catalyst Support Tool

The Catalyst Support Tool was implemented in C++. The purpose of this client
tool is to perform setup, testing, backup/restore, and management functions for
Catalyst. The Support Tool does not have a GUI-based user interface, which
makes it easier for Modus Operandi to support remote Catalyst sites. Not having
a GUI makes it easier to run the Support Tool across slow Internet and dial-up
connections.

The Support Tool provides operations for creating, deleting, and testing the
General Relation Manager. These operations allow Catalyst Administrators to
set up Catalyst and to determine whether the GRM is operating correctly. Quick
tests, timing tests and a full operational test suite are provided. The Support
Tool determines automatically if the tests passed or failed and summarizes the
results at the end of the test.

47

The Support Tool provides operations for testing object servers. Quick, timing
and full operational tests are provided. The Support Tool determines
automatically if the object server tests passed or failed, and summarizes the
results at the end of the test. The object server tests are useful for determining if
a data source has been tightly integrated correctly.

The Support Tool provides operations for importing and exporting relation
definitions to and from the GRM. This capability is used to load new relation
definitions into the GRM.

The Support Tool provides operations for importing and exporting object
communities. Object communities are networks of related objects. They are
specified by giving a starting object and a list of relations to be followed.
Exporting an object community is performed by writing all the objects, attributes,
and relationships in the community to an ASCII text file in the format defined by
Catalyst. The Support Tool exports the starting object and then follows the
instances of the specified relations recursively and exports the objects it
encounters. The export process stops when all objects connected together have
been exported.

Importing an object community requires reading an export file and creating all
the objects, attributes and relationships it contains in Catalyst. An existing object
community can be restored by recreating the objects using the same unique
identifiers they had when they were exported. This technique can also be used
to fix any holes where objects were accidentally deleted from an object
community. Conversely, a totally new object community can be created by
giving each object a new unique identifier as it is imported. This can be used to
create a copy of an object community.

Using the Support Tool requires a little more expertise and low-level knowledge
than it should. Object community operations such as defining, importing,
exporting, copying, deleting, locking, unlocking should be added to the Catalyst
Browser Tool and made more convenient for the user. The concept of object
communities was discovered and evolved after Catalyst had been sufficiently
implemented to support complex networks of objects.

3.2.11 Catalyst Impact Analysis Tool

The Catalyst Impact Analysis Tool was implemented in C++. The Impact
Analysis Tool required about nine man months to design, code and test.

The purpose of the Impact Analysis Tool is to provide the user with the
capability to determine how changes to an existing Catalyst object will propagate
and cause impacts throughout a system's existing object network. Impacts are
found by traversing the object network based upon an Impact Definition, which
defines a starting object, a set of predefined relations, and conditions that
"connect" it to other objects in the network. Consider the example object
network shown in Figure 3.2.11-1.

48

Figure 3.2.11-1. Example of an Object Network

Based on this object network, suppose we wanted to determine all the impacts if
we change the object Req_01. The first step is to start from the object Req_01 and
find the related objects. Once these related objects are found (SW_Req_01A,
IF_Req_01 A, SW_Req_01B), we check the objects related to them. For example,
from the SW_Req_01A, we check related objects and find the Component_01,
and Test_01 A. Following a similar procedure for objects IF_Req_01A and
SW_Req_01B, we find that Test_01B and Test_02B are also impacted.

49

Impact Analysis [1] u
. Analysis V I

Analysis
Name

Analysis
Description

Definition:)

FONRAD Analysis 01A

This Impact Analysis determines impacts to the FONRAD
system based on ECP_10_20_36 which increases the
detection range.

Paste
Starting
Object ,

Clear j

Class

Image

! Unid

Start j \-*; '•./1 s Status: Waiting

Summary

Impact

This analysis has been run with starting objects SYSREQ
100.1 - Detection Elevation, and SYSREQ 100.2 -
Detection Angle. The objects impacted are shown in the
impact results.

Solution

The solution requires significant changes to the testing
program due to the performance increase.

Code Impact

TimeTo Implement

Schedule Slip

Personnel

Cost

3000

360

25 _____

60

Lines Of Code

Hours

Days

Test Engineer

Dollars (K)

Figure 3.2.11-2. Catalyst Impact Analysis Tool

The previous example accounted for all relationships (i.e., there were no
conditions imposed on the relationships). Suppose we are only interested in the
impacts to SW_Requirements that specify Performance characteristics. In this
case, we are looking for relations among objects of the type Requirement that
decompose into SW_Requirement, with the condition that the
SW_Requirement.Type attribute equals Performance. This would lead directly
from Req_01 to SW_Req_01A. To gain more information about the impacts, we

-50-

can also check relations from the SW_Requirement. For example, we may also be
concerned with the relations SW_Requirement allocated to Component, and
SW_Requirement verified by Test with the Test.Type attribute equal to
Performance. Using these new conditions, and starting at Req_01, we find the
only impacted objects to be Req_01, SW_Req_01 A, Component_01, and
Test_01A. Figure 3.2.11-3 shows the basic sequence of operations to perform an
impact analysis.

Impact Analysis
Launch Window

r Create
Impact

Definition

V*
Create
Impact

Analysis

Select
Impact

Definition

Select
Starting
Object

Show/Edit/Quantify
Individual Impacts

and Solutions

Show/Edit/ Quantify
Overall
Impact

Figure 3.2.11-3. Sequence of Operations During Impact Analysis

It is important to note that an impact analysis may be run multiple times, each
time with different starting objects and even different impact definitions, with
the results either being truncated or concatenated based on the user's
preferences. Figure 3.2.11-2 shows the Impact Analysis main window. Methods
for Creating, Editing, and Deleting impact analyses and viewing the results are
provided by the set of impact analysis user interfaces. An important feature of
the impact analysis is that when an analysis is being run, the user may still
interact with the Impact Analysis user interfaces. This is possible because the
analyzer component of the Impact Analysis tool is designed to be multithreaded
(i.e., it has its own thread of control). This also allows multiple impact analyses
to be run simultaneously.

3.2.12 Catalyst Process Definition Tool

The Process Definition Tool was created using InSight, an object-oriented meta-
modeling tool developed by Modus Operandi. InSight can be used to create
tools which model complex object interactions using declarative constraints.
Objects in InSight can be displayed in presentations which are also governed by

51

constraints. An engineer who is familiar with InSight can use it to create single
user CASE tools in a matter of weeks without any C++ or other programming.
The Process Definition Tool uses objects to model and display the various parts
of a process being defined by the user.

The Process Definition Tool required only about 4 weeks to develop, and has
required about 4 additional weeks of enhancements since then. Using InSight to
create the Process Definition Tool saved an estimated 24 weeks of programming
effort.

fli A ctivity D e f i n it io n

Process: <process;

< work product >

«work product>

<activity> i ^ <work product >

<none>

Figure 3.2.12-1 Catalyst Process Definition Tool

The Process Definition Tool allows a user to graphically create and document a
process. Catalyst uses a process model that is similar to the one created by the
Software Engineering Institute (SEI). An additional level of detail, known as
steps, had to be added to the model to define a process in enough detail that it
could be enacted by a tool. Once a process has been defined, it is exported from
the tool to a file. This file is then imported into Catalyst using the
Administration tool, where it is ready to be enacted.

3.2.13 Catalyst Process Enactment Tool

The Process Enactment Tool was created in C++. The purpose of this tool is to
enact processes defined by Catalyst users. Process enactment is intended to reduce
the effort needed to set up, manage, and track the performance of work on
engineering developments using Catalyst. Catalyst enactment supports the

52

creation of work assignments to people, tracking the inputs and outputs from each
activity, and the delegation of work to multiple users.

The Process Enactment Tool is fairly complex. Operational in 1996, it was the first
CORBA-based workflow or process execution tool in the world as far as our
research can discover. It required about 12 man months to design, implement, and
test. At least half of this time was spent on designing the tool, before any code was
written. The complete design, in terms of object schemas and algorithms was
worked out for all parts of the process enactment before the implementation was
started. This turned out to be a winning implementation strategy, because no
design changes were required in the tool once it was completed.

Once the tool was operational and we gained some experience enacting
processes, we made a few minor changes to the process model to help make the
assignment of work products easier to control. A few new features have been
added to the tool since its initial creation, but no flaws have been found in the
original code or design.

Figure 3.2.13-1 depicts the Process Enactor Screen design. The design is centered
around three main "views" - the Desktop View, the Assignment View, and the
Activity View.

The user can display one of these views at a time, and can switch views at will.
Through the Desktop and Activity views, the user can get to the Perform Activity
window. From there, the user enacts defined processes by selecting a
task/method, and executing method steps from the Perform Method window.
The following paragraphs provide more details on each window and view.

Initially, the user must select a Project Assignment to work within. A Project
Assignment associates a person with particular roles on a particular project. If
the user has only one Project Assignment, then that assignment will be used. If
the user has more than one Project Assignment, a selection window is displayed
to allow the user to select the Project Assignment to work under.

The Desktop View displays all of the work products assigned to the user's active
Project Assignment. The work product name, as well as its current state are
shown. Double-clicking on a work product selects it for use and initiates an
activity to use it in. If there is more than one possible activity in which the work
product can be used in its current state, a selection window is displayed to allow
the user to select the activity to perform. Once an activity is selected, if there are
other work products that are also needed for the activity, a selection window is
displayed for each needed work product type, allowing the user to select the
other work products to use within the activity.

53

If > 1 Project Assignment

Select Project Assignment

XXXXXX XXX X XXXXXXX XXX XXX

XXX xxxxxxxxxxxxxx

XXX XXXXXXXXXXXXXXXXXXXXXXX

XXXXXX XXXXXXXX

Main Window
menus:

View -i—Desktop (1)
ly-Assignment^)
•—Activity (3)

(1) Desktop View
Project,User,Roles

WP

WP

WP

(w5

Assignment View
Project,User,Roles

Joe
WP

BUI
WP
WP

(31 Activity Vipw

meiert Activity

Select Other WPs

Perform Method

Perform Activity
Taskl

Method 1
I Method?!

Task 2
Method

^

* modal dialogs for each step;
1 window per step type

Figure 3.2.13-1 Process Enactor Screens

The Assignment View displays all work products assigned to each user for all of
the users on the current project (the current project is the project associated with
the active Project Assignment). The work product type, its name, and its current
state are shown. No actions can be initiated from this view, but it provides a
good place for project managers and others to get an overview of the project by
seeing where the work products are and what states they are in.

The Activity View displays all the activities within a process selected by the user.
This view serves two main purposes. First, a user can use this view to get

54

refamiliarized with a process definition. All activities, work products, and roles
are shown. Second, the Activity View provides a way to begin process enactment
by specifying an activity, rather than selecting a work product. This is especially
important for activities in which there is no initial work product, like in an
activity in which a work product is initially created.

Catalyst Process Enactor: Activity View

|a3ite:";?|eit-:-^w ~ Format -Help 3
Project: j ASEA

User. I Mary Freen
Roles: [Coder, Designer, Management
Process:["change Managements

Identify Change -J' Change Request "♦ Review Change -^r Change Request

<none> Management

4>
E X

Investigate
Solution ^ Change Request dS Revieu Solution ^" Ch-Vige Request

*
lesigner Manager»ent

dS Implement Solution =J^ Change Request -O Close Change
Request > Change Request

f

Figure 3.2.13-2 Catalyst Process Enactment Tool

When the user initially brings up the Activity view, if his project assignment
involves more than one process, a selection window is displayed that allows the
user to select the process to be displayed in the activity window.

The user can initiate an activity by double-clicking on the activity icon in the
activity view. If there are work products required by the activity, a selection
window is displayed for each work product type, which allows the user to select
the work products to use with that activity.

The Perform Activity window displays the tasks and methods within a selected
activity. From this window, the user selects a method to perform. Only one
method can be performed at a time. Selecting a method to perform brings up the
Perform Method window.

55

The Perform Method window displays the steps within a method. From this
window, the user performs each step, thereby enacting the process. Steps should
be performed in the sequence displayed. However, the enactor does not enforce
order.

There is a step window for each step type defined in the Process Definition Tool.
Most of the step windows are simple dialogs or confirmation boxes. All step
windows are modal, so that no two steps can be performed at the same time.

The step windows are implemented using functions rather than classes. Since
the step windows are modal dialogs, defining them as functions rather than
classes results in a simpler programming interface. Rather than creating an
object, executing methods to get an answer, and then destroying the object, a
single function call will display the window, get the result, perform any
necessary processing, and return to the caller when done.

3.2.14 Catalyst Administration Tool

The Catalyst Administration Tool was created in C++. It required about five
months of work to design, code and test. The Catalyst Administration Tool
provides a graphical interface that makes it easier to set up and maintain
enterprises and projects in Catalyst. Catalyst uses a simple enterprise model to
keep track of what people work for the enterprise, what projects they work on,
and what roles they are allowed to play on each project. This infrastructure
supports Catalyst process enactment.

Catalyst Administration Tool

^* -^»Sl^-t'sßiiqjgct MSeöpte View Sgeljp

Enterprise: j SPS

Projects: People:

ASEA
l-SPECS

John Faure
John Faure on ASEA
John Faure on l-SPECS

Mark Wallace
Mark Wallace on ASEA
Mark Wallace on l-SPECS

Tod Hagan
Tod Hagan on ASEA
Tod Hagan on l-SPECS

Mary Freen
Mary Freen on ASEA
Mary Freen on l-SPECS

Mike Winburn
Mike Winburn on ASEA

Figure 3.2.14-1 Catalyst Administration Tool

56

Strictly speaking, the work performed by the Catalyst Administration Tool could
also be done using the Browser. Enterprises, projects/and users can be created
and manipulated using the Browser. However, it requires a great deal of
expertise to create and link together the correct objects and relationships to build
a working enterprise and project. The Administration Tool was created to
drastically lower the expertise required and speed up the management of
projects and users. Creating and using this tool has demonstrated the value of
having special purpose tools that hide the lower level Catalyst machinery from
the user, and have suggested the future creation of even more sophisticated tools
for assisting the user. The Administration Tool itself may be enhanced in the
future to make managing other aspects of Catalyst easier.

3.2.15 Catalyst Tel Scripting

The Catalyst Tel Scripting capability was created using C++, and required about
one month of effort to create. Later in the project, we spent an additional two
weeks making several valuable enhancements. The short time required to create
this capability is due in large part to its author's (Mark Wallace) extreme
familiarity with Tel technology.

This capability was originally named the Object Community Interchange (OCI)
Tool. The OCI Tool was envisioned as custom scripting language for importing
and exporting data to and from ASCII files used by engineering tools. Our
objective was to provide a low-cost way to rapidly create loose integrations with
tools that used simple file formats. These tools included word processors,
spreadsheets, graphing programs, HTML, etc. The original OCI Tool was a
parser and interpreter for a custom scripting language that was optimized for
reading and writing ASCII files. The original OCI Tool was written in C++.

When Mark Wallace joined the Catalyst team, he educated the rest of the team
about Tel. Tel is a standard scripting environment developed by Dr. John
Ousterhout, a U.C. Berkeley professor who later worked for SunSoft. Tel is a
widely used public domain technology that is well documented in several mass
market computer books. Tel has been extended to support windowing, rule-
based expert systems, and many other useful capabilities.

It did not take long to decide to abandon the original OCI approach for a Tcl-
based solution. This decision has proven to be very beneficial, since many new
capabilities have been made available to Catalyst for almost no cost. Tel is a
much more powerful scripting language and provides access to operating system
functions. Tel has recently been ported to Java in the form of Jacl. Tel is widely
supported and easy to learn due to the excellent books available on the subject.

The Tel scripting environment is used to provide low cost loose integration with
simple tools, as we originally envisioned. Several additional Tel "commands"
have been created to simplify writing loose integration scripts. Tel is also used to
perform data creation, manipulation, analysis, annotation, and searching.

57

Adding a rule-based expert system extension is being considered for future
work. This would be useful for creating intelligent Catalyst agents.

3.2.16 Catalyst QFD Tool

The Catalyst Quality Function Deployment (QFD) Tool was created using
InSight. About 4 man weeks were required to create the QFD tool. An
additional 2 man weeks of effort have gone into enhancing it to provide more
integration with Catalyst. Using InSight instead of C++ to create the QFD tool
saved approximately five man months of programming effort. The QFD tool
was implemented for two reasons. First, the QFD technique is useful for
engineering prioritization and information capture, and was of interest to the Air
Force and Joint STARS users. Second, it serves as an example of the kind of tool
that can be implemented very easily and quickly using InSight.

DIRECTION OF IMPROVEMENT ♦ | ♦ | -t | ♦ | ♦

\. HOWS

WHATS \.

i
0
r
i
t
y

? 9 ? Customer
Rating

A Our Company

12 3 4 5

9 9 9 ? 9

? ? 0

? 0

? 0
? ?

0

Organizational Difficulty 0 0 0 0 0

HOWMUCHs

? ? ? ? ■>

Engineering Assessment5

A Our Company

2
1

Absolute Importance 0 0 0 0 0

Relative Importance % 0 0 0 0 0

Figure 3.2.16-1 Catalyst QFD Tool

58

The Catalyst QFD tool employs a systematic technique for implementing and
obtaining quality - Quality Function Deployment. The Catalyst QFD tool was
specifically developed for the Catalyst program. The tool adheres to an open
architecture to provide a number of different facilities for integrating QFD with
other Catalyst tools. This open architecture is necessary to allow QFD
requirements to be populated with the actual requirements managed by Catalyst,
to export information as Catalyst objects, and to support navigation from objects
displayed in the QFD tool to related objects managed by Catalyst. The Catalyst
QFD tool's open architecture allows demonstrations of these integrations.

3.3 Catalyst Tool Integration
Considerable benefit can be realized with each new tool integrated into Catalyst.
Because Catalyst is a tool integration framework rather than a tool-to-tool
integration system, integrating a tool with Catalyst immediately allows it to
interact with all other tools integrated into Catalyst.

Before getting to the specific strategies, a few technical issues must be presented
to make the discussion more meaningful. A central problem in integrating a tool
into Catalyst is handling the mapping of data in the tool to objects and
relationships in Catalyst. All data in Catalyst appears as CORBA objects with
attributes, which are interconnected by bi-directional relationships. The
"appearance" of objects and relationships in Catalyst is defined by the Catalyst
Interface Definition Language (IDL) modules. IDL is used in CORBA to define
the interfaces to objects. It is these IDL modules that define the uniform interface
to all Catalyst data, and the task of the server side tool integrator is to support
this client-server interface. The data in a tool being integrated must be mapped
into either objects and their attributes or into relationships.

In Catalyst, all objects are represented as CORBA objects. CORBA objects are
managed by object server programs that (usually) run in the background and
handle requests to their objects made by clients using CORBA "object references."
An object reference can be thought of as a pointer to a CORBA object. An
unfortunate property of object references is that they are many-to-one with
objects. In other words, many different object references can refer to the same
CORBA object. This property makes object references impossible to use to
uniquely identify an object.

To solve this many-to-one problem, Catalyst assigns each object an identifier that
is guaranteed to be unique across all machines, processes, threads, and
invocations of Catalyst. This uniqueness is critical to correctly identifying objects.
To avoid the performance and reliability problems associated with a centrally
managed agent for creating unique identifiers, Catalyst uses the following
strategy for generating unique distributed identifiers. Assume a new object is
being created by some thread of some process on some machine. Take the
machine's Internet Protocol (IP) address, the process's identifier, and the thread's
identifier. In addition take the second since January 1,1970, and the microsecond
within that second at which the object was created. This tuple of five integers is

59

fast and easy to compute (UNIX supplies each piece of information) and
guaranteed to be unique. A utility in Catalyst is provided for generating these
unique identifiers.

An object's identity within Catalyst is based on the value of this unique identifier.
This property, which is sometimes referred to in the object-oriented community
as immutable object identity, has many subtle benefits. The CORBA object
representing the Catalyst object may be exported to a file, deleted, and then re-
imported at a later date. As long as the old unique identifier is assigned to the
new re-imported object, the old object has been restored as far as Catalyst is
concerned. This allows objects to be moved between machines, and to be deleted
and reconstructed on demand. It also allows the same object to be located at
another site, so that exact duplicate networks of objects can be maintained and
updated at both sites.

It is the responsibility of the tool integration software to assign and maintain the
mapping between these Catalyst identifiers and the information needed to find
the corresponding data within the integrated tool. How this is done depends on
the type and quality of information made available by the tool. Tools that
support some form of unique and immutable data identification lead to the most
straightforward and high quality integrations. Various integration strategies
based on the level of support provided by the tool are discussed below.

3.3.1 Loose Integration Strategy

The loose integration strategy is used when a tool only supports single user
access to its data, when the tool has an inadequate or no application programmer
interface (API), or when it is important to integrate a tool with minimal effort.
This strategy centers around processing a data file generated by the tool and
creating objects and relationships in Catalyst that represent the data in the file.
Loose integration is not the optimal strategy, since it doesn't provide "live" access
to the tool's data. However, loose integration can be very useful in certain
situations.

Many tools that lack APIs have facilities for writing data to a file according to a y

format that is documented or can be reverse engineered. In a loose integration,
"wrapper" software is written to process this file and then the desired
information is extracted and replicated within Catalyst by creating objects and
relationships. The information in Catalyst can be kept up to date if the
integration wrapper writes a file that maps from the tool data to the Catalyst
unique identifiers of the objects created. When changes are made to data in the
tool, the integration wrapper can be run again, and it can use the mapping file to
find the original Catalyst objects and update them. Bi-directional data exchange
can be performed using a loose integration, if required, by making the wrapper
extract information from Catalyst and write it in a format that is readable by the
integrated tool.

60

Using a loose integration effectively requires adhering to a policy that reflects
how an organization wants to apply the integrated tool. Due to the inherent
redundancy of this approach, problems can arise if modifications are made to the
data within Catalyst and the tool simultaneously. One option for handling this
problem is to consider the tool as the primary method of creating and modifying
the data and to consider Catalyst as a way of moving the data into other tools,
and as a way of making the data more visible to other team members. In other
words, the data should be treated as read-only within Catalyst. One way of
dealing with the lack of live access in a loose integration is to transfer data
between the integrated tool and Catalyst at certain checkpoints, such as when a
consistent version of the data has been created.

Mapping
Files

E.
=n

Loosely
Integrated

Tool

Mapping
=. | Files

Tool Data
Files

Loose
Integration
Wrapper

I

[^^^■M |
^^=

S: =t= £

_ ~

= I Exporte,d j Word processore
= Reports 41
— Graphs / y|y^=i^^Bs=Ej
 ' Data / I =|

Catalyst
Tel

Scripting

Graphing Programs

I
J

fV^^SÄSS—
z. _ MM _ M

M ■ ■ m»
■M H — m »
MMB ™ ■■ m ■■
■" mm ■ ■■

Ü y
Spreadsheets

Catalyst CORBA Client Interfaces

CORBA

I
Catalyst CORBA Server Interfaces

—£ f
Catalyst
General
Relation
Manager

Catalyst
Object
Servers

1Z

Tight
Integration
Wrappers

Tightly
Integrated

Tools

Figure 3.3.1-1. Loose Integration Strategy

61

A loose integration is especially useful for recovering legacy information (from
past efforts) that is valuable reference material but will no longer change. A
simple loose integration can be written to extract data from obsolete or
unsupported tools and store it in Catalyst in new tools or databases. At this
point, the old tool no longer needs to be supported.
A Catalyst Tel scripting environment was developed to reduce the effort
required to perform loose integrations with many tools. Catalyst Tel scripts can
be used to implement bi-directional loose integrations. A Catalyst Tel import
script can be written to read a tool's data file and create Catalyst objects and
relationships for the data the file contains. A Catalyst Tel export script can be
written to navigate among Catalyst objects and relationships, outputting a data
file and a mapping file as the script directs. Special Tel procedures were
developed and provided with Catalyst to make import, export, and map file
management easier when implementing loose integrations.

The mapping file created by an export script can be used by an import script to
update Catalyst objects with any changes made to data using the integrated tool.
Catalyst Tel scripting was created to handle bi-directional integration with file-
oriented tools, such as word processors, spreadsheets, graphing programs,
scheduling programs, etc. Tools that have simple or regular data formats can be
integrated into Catalyst by writing the appropriate scripts.

3.3.2 Tight Integration Strategy

The tight integration strategy is used when a multi-user API is supported by the
tool. This is a more complex integration strategy, but it provides "live" access to
the tool's data and avoids data redundancy. The essence of this strategy is to
leave the data within the tool and store information in a location that maps from
the tool data to Catalyst objects. A CORBA object server is written, which uses
this mapping information to make data in the tool appear as CORBA objects and
relationships within Catalyst. The process of creating these "shadow" CORBA
objects representing data in the integrated tool is known in Catalyst as
"publishing." The mapping information for the shadow objects can be stored
within the object server, or within the tool itself.

To be a good choice for a tight integration, a tool must provide multi-user access
to its data. If it does not, the object server integrating the tool can "tie-up" access
to the data for long periods of time, making it inaccessible to team members.
CORBA object servers are most efficient if they are configured to stay in memory
for 30 to 60 minutes after their last access. This prevents constant swapping in
and out of memory. For tools that support multi-user access, this requirement is
not a problem.

One approach to storing the mappings needed for a tight integration is to put
them in the CORBA "ref data." Every object in CORBA is provided with up to
1024 bytes of ref data. This ref data is intended to be used by an object server
writer to map from CORBA Object References to the object's actual data. When

62

an operation on an object comes into the server, the ref data is provided to the
server by CORBA as part of the operation. The ref data can be used to store the
Catalyst unique identifier and other mapping information needed to identify the
object within the tool. This is the most efficient way to construct a tight
integration, but it takes the most programming effort and requires detailed
knowledge of the workings of CORBA object servers.

CORBA Connection to
Other Catalyst Tools

Catalyst CORBA Server Interfaces

1
Shadow Object Storage
Catalyst Identifier to

Tool Identifer Mapping

Tight
Integration
Wrapper

(1,144,1)
(2,2,2,2,2)

(1,2,3,4,5)

Shall 3.1.1
Shall 3.1.2

Shall 3.1.3

Integrated Tool's Data Storage

Shall 3.1.1
. Shall 3.1.2

Shall 3.1.3

The system shall...
The system shall...
The system shall...

100
200
300

Figure 3.3.2-1. Tight Integration Strategy

A simpler approach is to use a lightweight server such as the one provided by
SunSoft's NEO, which includes a "toolkit" for building servers. This toolkit hides
much of the complex machinery involved. Using the toolkit makes server writing
far simpler and has little impact on performance, since most of the actions
performed by the toolkit server would have to be hand coded in the ref data
server approach. Using this approach, the mapping information would be stored
by the lightweight server, and used to locate objects within the tool.

A final approach is to store most of the mapping information in the tool being
integrated. This approach may not be as advantageous in some cases because it is
more intrusive to the tool. The other approaches are more transparent as far as
the tool itself is concerned. All three approaches must handle translation of the
links between integrated tool data into Catalyst relationships.

63

3.3.3 Client Integration Strategy

The essence of the Client Integration strategy is to use Catalyst as a distributed
object base or "virtual repository." This strategy is appropriate for tools that are
heavily oriented toward interacting with the user through a user interface. This
strategy is also appropriate when a tool only provides single user access to its
data, but multi-user access is desired. Accomplishing a client integration requires
replacing the data storage and manipulation facilities of the tool with Catalyst's
client side interfaces, in effect using Catalyst to store the tool's data. Because
Catalyst is a distributed system, this type of integration allows the tool's data to
be shared live with all the other Catalyst tools and users. This is a very powerful
type of integration, particularly for tools where collaborative engineering efforts
are required.

Catalyst CORBA Client Interfaces

CORBA Connection to
Other Catalyst Tools

Figure 3.3.3-1. Client Integration Strategy

Catalyst provides two levels of client-side interfaces. The lower level requires
sending Catalyst CORBA messages - talking directly to tightly integrated tools
and Catalyst object servers. This level is straightforward to program, but requires
the client to store objects and relationships. A higher level interface is available in
the form of a special purpose object cache created for Catalyst. The object cache
buffers object class and relation (model) information, object and relationship
instances, and provides high level policies for handling object locking and
saving. It provides considerable performance advantages by buffering a working
set of objects and relationships in memory. Which level to use depends on
whether the object cache capabilities will benefit the tool being integrated. The
effort required for this integration strategy depends on the degree of difference
between the integrated tool's current API and Catalyst's client-side interfaces.

Both CORBA and Catalyst use navigation-oriented searching, meaning that
relationships are used to travel from object to object through the data. Tools that

64

are based on performing broad searches of all data (rather than on navigating by
following relationships) may require more effort to integrate. A new specification
for performing broad searches is being drafted for inclusion in CORBA. Search-
oriented tools will become easier to integrate when this specification is supported
by CORBA vendors.

The client tool's data may be stored in other tightly integrated tools or in Catalyst
object servers. For example, if a relational or other database has been tightly
integrated, the tool's data could be stored within it. New Catalyst object servers
can also be created to store the tool's data. Catalyst contains a toolkit that can
create a new object server from a description of the object in a matter of minutes.
This toolkit is available to create servers for objects that have no existing server in
Catalyst.

3.3.4 Catalyst ORACLE Integration

The Catalyst ORACLE integration was created in C++. It required about one
man month to create. An additional two man-weeks have been spent on
enhancing it to make it more reliable. The ORACLE integration currently
provides read-only access to the database. Write access could be added in an
additional man month. The ORACLE integration has proven to be very reliable
and effective.

Making ORACLE data visible in Catalyst is a two-part process. Making data
from an integrated tool visible in Catalyst in called publishing. The first part
requires using the Browser to create an object of a class that maps to ORACLE.
This process is easier if the object is from a "top level" class in the ORACLE
schema, such as a system or document. The new object is opened in the Browser,
so that its attribute may be modified. The ORACLE key of the data in ORACLE
to be made visible is entered into the key field of the Catalyst object that was
created. The Catalyst object is then saved. If the object is refreshed, the key
value will be used by the ORACLE integration to retrieve the object's data from
ORACLE.

The second part of the process requires following relationships from the new
object. The ORACLE integration will determine what objects are related to the
first one. If these objects have not been published in Catalyst before, it will
automatically publish them. This is known as autopublishing. The related
objects will appear in the Browser. The user can then follow relationships from
these objects, which will result in more objects being published.

Autopublishing makes data in ORACLE visible in Catalyst on demand. This
may occur when a user is using the Browser, or when a Tel script is running and
tries to access them, or when another tool such as the Impact Analysis Tool is
running and searching for impacts. Autopublishing is a very transparent
technique once the user has manually published the first object.

65

3.3.5 Catalyst RDD-100 Integration

The Catalyst RDD-100 Integration was created in C++. It required about one
week to create. RDD-100 was loosely integrated using a custom RDD-100 RDT
file parser written in C++. This approach was chosen due to the complex syntax
used in RDT files. It might have been written in Tel if much of the parser code
had not been available for reuse from other projects.

RDD-100 is an object-oriented tool that represents data using objects, attributes,
and relationships. The RDD-100 Integration reads an RDD-100 RDT file and
replicates the objects and relationships it contains in Catalyst. A mapping file
that describes how to map RDD-100 object, attribute, and relationship names to
Catalyst names. The mapping process allows multiple RDD-100 classes to be
mapped to a single Catalyst class, and multiple RDD-100 relations to be mapped
to a single Catalyst relation. This help simplify the Catalyst representation of the
RDD data and helps make RDD data fit better within an existing schema.

The Catalyst Object Cache was enhanced to support mapping integrated tool
Schemas to the Catalyst schema. These enhancements can be used to make it
easier to loosely integrate future tools.

The RDD-100 Integration has been successfully applied to import real world
RDD-100 files into Catalyst. Future enhancements may be required to process
more of the specialized RDD-100 features, such as F-nets and T-nets, which
represent function interactions and time-based events.

3.4 ASEA Deliverables

This section lists the items developed under the original ASEA contract. Many of
these items contain multiple volumes and many items were delivered in multiple
versions. A CD-ROM was delivered that contained electronic versions of all
documents, graphics and presentations developed under ASEA. A second CD-
ROM was delivered that contained all the source code and example data sets.

A001 R&D Status Reports (52 created)

A002 Contract Funds Status Reports (52 created)

A003 Conference Agenda (12 created)

A004 Conference Minutes (12 created)

A005 Presentation Material (12 created)

A006 Catalyst Software Development Plan (SDP)

A007 CSCI-01 Process Manager SRS

A007 CSCI-02 Browsers and Editors SRS

A007 CSCI-03 Meta-Modeling Toolkit SRS

A007 CSCI-04 Modeling and Analysis Toolset SRS

66

A007 CSCI-05 Documentation Toolset SRS

A007 CSCI-06 Catalyst Administrator SRS

A007 CSCI-07 Object Infrastructure SRS

A007 CSCI-08 Common Object Services SRS

A007 CSCI-09 Framework IDL SRS

A007 CSCI-10 Client Toolkit SRS

A008 Catalyst Interface Requirements Specification (IRS)

A009 CSCI-01 Process Manager SDD

A009 CSCI-02 Browsers and Editors SDD

A009 CSCI-03 Meta-Modeling Toolkit SDD

A009 CSCI-04 Modeling and Analysis Toolset SDD

A009 CSCI-05 Documentation Toolset SDD

A009 CSCI-06 Catalyst Administrator SDD

A009 CSCI-07 Object Infrastructure SDD

A009 CSCI-08 Common Object Services SDD

A009 CSCI-09 Framework IDL SDD

A009 CSCI-10 Client Toolkit SDD

A010 Catalyst Software Test Plan (STP)

A011 Catalyst Interface Design Document (IDD)

A012 Catalyst Computer Resources Integrated Support Document (CRISD)

A013 Catalyst Software Test Description (STD)

A014 Catalyst Software Test Report (STR)

A015 Catalyst Version Description Document (VDD)

A016 Catalyst Software Product Specification (SPS)

A017 Document Changes

A018 COTS Manuals

A019 Catalyst Overview Software Users Manual (SUM)

A019 Catalyst Support Tool Software Users Manual (SUM)

A019 Catalyst Administration Tool Software Users Manual (SUM)

A019 Catalyst Browser Tool Software Users Manual (SUM)

A019 Catalyst Process Definition Tool Software Users Manual (SUM)

A019 Catalyst Process Enactor Tool Software Users Manual (SUM)

67

A019 Catalyst Impact Analysis Tool Software Users Manual (SUM)

A019 Catalyst QFD Tool Software Users Manual (SUM)

A019 Catalyst OCI Tool Software Users Manual (SUM)

A019 Catalyst Tool Integration Guide

A019 Catalyst Administration Tool Users Tutorial

A019 Catalyst Browser Tool Users Tutorial

A019 Catalyst Process Definition Tool Users Tutorial

A019 Catalyst Process Enactor Tool Users Tutorial

A019 Catalyst Impact Analysis Tool Users Tutorial

A019 Catalyst QFD Tool Users Tutorial

A020 Training Course /Control Document

A021 Final Technical Report

3.4.1 Trusted Ontos Prototype ECP Deliverables

This section lists the items that were developed under the Trusted Ontos
Prototype ECP:

A022+ SSDD

A023+ R&D Test & Acceptance Plan

Philosophy of Protection Document

Demonstration Users Manual

Install Instructions

Demonstration Software

3.4.2 Integrated Security Analysis Tools ECP Deliverables

This section lists the items that were developed under the Integrated Security
Analysis Tools ECP:

A021R Final Report

A024+ Interim Summary - Integrated Toolset Detailed Design

A025+ Interim Summary - Extended Security Coverage

A026+ Interim Summary - Penelope & Romulus Integration

A027+ Interim Summary - Security Analysis Methods & Models, Security
Toolset & Catalyst Integration Design

A028+ Interim Summary - Security Requirements Analysis & Multi-policy
Tradeoffs (not delivered due to NSA funding shortfall)

A029+ Interim Summary - Testing

68

A030+ Interim Summary - Prototype Implementation

Computer Software

3.4.3 Security Study/Micro Process ECP Deliverables

This section lists the items that were developed under the Security Study /Micro
Process ECP:

A031+ Technical Report - Catalyst Security Study

A032+ Technical Report - Catalyst Micro-Process Study

A033+ SRS - Micro-Process Enactment

A034+ Update to existing SSS

A035+ Update to existing SSDD

A036+ Update to existing OCD

3.4.4 Joint STARS Demonstration ECP Deliverables

This section lists the items that were delivered under the Joint STARS
Demonstration ECP:

Catalyst System Traceability Document

Joint STARS Demonstration

Joint STARS Demonstration Data Sets

69

4 Catalyst Usage Scenarios

This section describes some of the many possible application scenarios for
Catalyst. Many other uses exist because Catalyst provides general purpose
integration and data processing capabilities, which may be combined in many
ways for many purposes. Some of the following scenarios were suggested by
outside Catalyst users who were applying Catalyst to the problems they needed
to solve.

4.1 Browsing Heterogeneous Databases and Tools

One of the most basic uses of Catalyst is to conveniently browse data which is
stored in heterogeneous databases and tools which are integrated with Catalyst.
Catalyst solves the problems of accessing distributed data which may reside on
heterogeneous platforms and which the data may be stored in many different
formats. Using the Catalyst Browser, a user can view objects and follow
relationships to other objects by simply clicking with the mouse. The user does
not need to know how to use any of the integrated tools which store the data.
The user does not even need to know where the data is physically stored. The
user may follow relationships which connect data stored in different tools. This
allows users to follow the traceability of data across many tools and engineering
phases.

The Catalyst Browser is very simple and can generally be learned in a few hours.
Browsing gives the user access to the entire set of integrated data without any
training in using the integrated tools. When the Java version of the Browser is
available, it will give users on Windows95, WindowsNT, Macintosh, and other
platforms access to all Catalyst data. Browsing data is an important part of many
of the more complex scenarios.

4.2 Storing Links Between Data in Multiple Tools

Catalyst may be used to create an integrated engineering information base which
spans many tools and engineering activities. This allows the traceabilities and
dependencies between data stored in different tools to be stored and used. The
background information supporting design and prioritization decisions can be
captured and linked directly to the relevant data objects. Because Catalyst is a
multi-user distributed tool this information becomes available to all personnel
working on the project.

The ability to link information among many tools is illustrated using a scenario
involving the Catalyst QFD Tool. The information supporting the various values
captured in the QFD matrix are linked directly to the values using Catalyst. This
allows other users to understand the rationale for why each of the particular
values were chosen.

The QFD matrix illustrated in Figure 4.2-1 captures the applicability of Global
Command and Control System (GCCS) Core Operating Environment (COE)

70

functions (the Hows) to Air Force mission needs (the Whats). Each interaction
element in the main QFD matrix is linked to a Catalyst Annotation object which
gives the rationale for the interaction value in the matrix. In the scenario, the
rationale for the interaction between Intelligence (mission need) and Security
(function) is described.

Mission Area Plans (MAPs) are used by the DoD to define short and long term
plans for some mission area. Mission needs identified by the mission area are
listed in QFD matrix under the "WHATs" column (e.g., crisis planning, force
deployment, intelligence, logistics, etc). These can be cross-referenced with the
GCCS COE functions. These correlations can be used, for example, to determine
which functions are most critical to implement based on the needs of the mission.
The computed relative and absolute importance weights found in the bottom
two rows of the QFD diagram can be used to help make this determination.
Catalyst can be used to link a mission need (a.k.a., requirement) to a Catalyst
Requirement object within the COE, a link which may be used later during
impact analysis and requirements traceability reports.

The "roof" or "hat" part of the matrix allows you to draw correlations between
the GCCS COE functions, and to link in Catalyst Annotation objects that describe
the rationale for selecting either high-medium-low correlations within the roof.
Intuitively, there would be a stronger dependency between Messaging and
Network Management than there would be between Messaging and Office
Automation.

The QFD matrix is linked to a Catalyst System object. Like other Catalyst objects
linked to the matrix, it is possible to open the object using the Catalyst Browser.
The user can traverse the hierarchy of components which comprise the system,
this is illustrated by "System Architecture", in the top right of the figure.

The "Business Case Analyses" document (for improving organizational
efficiency, quality of service, competitiveness, and customer satisfaction) is
linked to the Customer Rating portion of the QFD Matrix. The Business Cases
Analyses document can be improved by analyzing the data provided in the
"Customer Rating" column of the diagram.

71

jj I = i L ? \ \

% % \ ; '" 5 i ■;

<> .£ 3 " £ « |

= ; = " £ ?' .* 1

I i | f c -i ; | I
- ? - " J 5 5 -i 1
^ . a L. i. L i I ■* ■:■•

\ \ i / \ \ : i
\\i> \>;/

s> V./
S r L

■

Ü

«
*
tj
k.
^ L

SB "" '

* \ / w> \ /

■a

a

■a
a
s
U

•fa
a

OS

a
a

Figure 4.2-1 Storing Links Between Data in Multiple Tools

72

This scenario illustrates how rationale and other information can be captured
and linked together so that it may be retrieved and used later.

4.3 Supporting Collaboration Using Locking

Catalyst supports groups of users in collaborating on creating complex designs,
models, simulations, documents or other information. For example, if a group of
users are cooperating in creating a document they could assign responsibility for
one or more of the sections of the document to each of the group members. Each
group member would lock their sections by locking the objects and relationships
which make up the section. This would allow the other group members to view
all the document sections, see which group member was responsible for which
section, but will prevent any other Catalyst user from altering any group
member's sections.

Catalyst locks remain in place until explicitly unlocked, allowing the group
members to work on their sections for as long as it takes to complete them.
Catalyst locks contain the name of the user owning the lock. This allows other
users to see who has an object or relationship locked. The Catalyst Browser and
other Catalyst tools provide assistance in automatically locking and unlocking
object networks.

Catalyst allows locked objects to participate in new relationships. This policy
allows a group member to review and comment on document sections created by
the others. The reviewer can create Annotation objects containing their
comments and attach them to the relevant parts of the document. This allows
feedback and comments to be collected without allowing the original data to be
modified. The Annotations can be linked together and to other objects, forming
an integrated network of rationale and comments.

The document sections can be unlocked when they are completed or when the
entire document is completed. The entire document could then be locked by the
manager or engineer responsible for it. This would prevent further changes to it.

Although this scenario was described in terms of creating a document, it could
be applied to a group of users collaborating on creating any object network in
any domain.

4.4 Capturing and Using Rationale

One of the most powerful applications of the integration made possible by
Catalyst is the ability to capture, link together and use information which
formerly had no convenient storage and retrieval mechanism. Any Catalyst
object, regardless of where and how it is stored, can be linked to other Catalyst
objects using relationships. Catalyst provides the Annotation object class to
capture notes, graphics, audio and other types of data. Relations are provided
which allow Annotation objects to be linked to any other Catalyst object, as well
as to each other. A user can also define their own object classes that model more

73

specific types of rationale, the Annotation class is provided simply as an example
of what is possible.

Rationale information such as design studies, designer opinions, performance
tests, customer direction, literature searches, etc. can be linked directly to the
design components, requirements, tests, etc. to which they apply. This rationale
can be discovered later by other users looking at the design components, etc.

A very powerful type of rationale is the existence of relationships between two
items. For example, a design component may rely on an assumption about the
implementation of a second one. The system will cease to function correctly if
the second design component is changed without also changing the first one. A
relationship could be created between the two design components using
Catalyst. The presence of this relationship would alert engineers to the
dependency between them. Using Catalyst, this type of relationship rationale
can be captured and stored. Without Catalyst, if two items are stored in different
tools then most likely this relationship rationale will be lost because there is no
where to store it.

4.5 Impact Analysis

A scenario for performing an impact analysis using Catalyst is described in
Section 3.2.11.

4.6 Process Enactment

The Catalyst process definition and enactment capabilities can be applied to
many useful scenarios. Process enactment was once viewed in the engineering
community as being beneficial by preventing the user from doing things they
should not. Trying to control what the user did has not proven to be very easy or
very useful. The real benefits of process enactment are realized by assisting the
user in correctly following a process. A lot of manual tasks can be eliminated
through process enactment. Similarly, a lot of useful information can be
presented at the users fingertips at the time when they need it. The real benefit
of process enactment may be in having knowledgeable users capture their
expertise in a usable way by defining processes. Their expertise is then made
available to less experienced users through enactment of the process.

Capturing expert knowledge is illustrated by the following scenario, which was
implemented in the HLA Integrated Development Environment (HIDE) being
developed by SAIC, Lockheed Martin and Modus Operandi for STRICOM. A
Federation Development Process (FEDEP) which covers the complete HLA
simulation development lifecycle was developed by Dr. Kent Bimson of SAIC.
This process encapsulates knowledge about what activities to perform, what
order to perform them in, what tools to use at each step, and why each step is
being performed. During certain steps, the process automatically launches an
internet browser and opens it to the appropriate government web site containing
policy recommendations and standards for HLA development.

74

The benefit of this process enactment scenario is that it leads a novice user
through the creation of an HLA simulation, it presents them with the information
they need at each step, and launches the tools needed. The process reduces the
expertise needed and automates some of the manual tasks required to develop
the simulation.

4.7 Migrating Data Between Tools

Catalyst can be used to migrate data from one integrated tool to another. This
capability has many useful application scenarios. For example, Catalyst can be
used to migrate data in a legacy tool into a newer tool which provides more
features or a lower cost of ownership. To migrate the data, both the tools must
be integrated with Catalyst. These can be either tight or loose integrations, as
long as the data writing capabilities were implemented in the integration of the
new tool. A Tel script is written to traverse the data in the Legacy tool and copy
it to the new tool. This copying process can also perform any data
transformations needed to make the data compatible with the new tool. A
simple migration is illustrated in Figure 4.7-1.

Figure 4.7-1 Simple Tool to Tool Data Migration

The time required to perform such migrations is dependent on the time required
to integrate the tools and the complexity of the data transformations which need
to be made in the Tel migration script. Simple migration scripts for tools which
are already integrated can be written in a matter of hours. More complex
migration scripts may require days or weeks to be created. Because the full
power of a programming language is available in TCL, almost any
transformation can be made as long as the necessary information exists in the
Legacy tool.

A more complex migration scenario illustrated in Figure 4.7-2 leverages Catalyst
to reduce the effort required to set up simulation runs during a development

75

effort. The basis for the scenario is that an engineering design tool is used to
store the baseline design for an aircraft which is under development. The
baseline design is only modified using the design tool. When changes are made
which require simulation, Catalyst scripts are used to migrate the design
information to several integrated simulation and analysis tools. These scripts
pull information about the aircraft from the baseline design and transform it as
needed for each simulation tool. The simulations are then run and analyzed.

Engineering
Design Tool Rotor

Simulator A

Structural
Analysis
ToolB

Figure 4.7-2 Migrating Design Data into Simulators

This scenario provides two immediate benefits. The first is that the effort
required to set up simulations is greatly reduced since the process is now
automated. This allows more simulations to be performed in the same amount
of engineering time, allowing the designers to consider more alternatives and
create a more refined and effective aricraft. The second benefit is that all the
simulations are driven from the same design reducing the chance for errors. If
several simulation tools are used, as is common, there is always a danger that
there are descrepancies in the input data used to feed the simulators causing the
production aircraft to not perform as expected.

Although not shown in the figure, the simulation results can be captured in
Catalyst and stored to create a design history of the aircraft. The simulation
results for various alternatives can be referred to in the future to recover the
rationale for design choices. This scenario can be applied any time one or more
tools needs to be driven from data which is maintained in another tool.

4.8 Backing Up Multiple Tool Baselines

The Catalyst Support Tool supports writing the contents of an object community
to an ASCII Catalyst export file. This file contains the complete contents of the

76

object community. The export file can be imported back into Catalyst later to
reload the object community. This provides a backup and restore capability for
Catalyst. The object community can contain objects and relationships which are
stored across many integrated tools, thus allowing baselines of information
spanning many tools to be backed up and restored as a single unit.

The export file can be sent to other organizations and imported into their
Catalyst installations. This allows organizations to deliver information to each
other electronically, and to collaborate electronically on the development of
complex information networks.

4.9 Contractor/Subcontractor Collaboration and System of Systems
Development

Catalyst can be used to enable the development of an integrated engineering
information base when multiple contractors are collaborating on building one
system or on integrating a system of systems. This scenario applies equally to
both activities.

77

Regs
ToolRl

Design
ToolDl

Catalyst

Contractor
Facility

]N Catalyst
Export

File

Catalyst
Export

File

>^ Contractor 2
^ Facility

i^rscfrsTTH

Catalyst
Browser

Catalyst

Regs Tools
R1&R2

Design
Tools

D1&D2

Test Tool
Tl

Prime
Contractor

Facility

Figure 4.9-1 Contractor/Subcontrator Collaboration

A scenario involving a prime contractor and two subcontractors is illustrated in
Figure 4.9-1. Each of the subcontractors in the scenario would be responsible for
developing the requirements and design for one subsystem of the overall system.
Further, one subcontractor would be responsible for developing the tests for their
subsystem. The prime contractor would be responsible for integrating the
subsystems and developing the tests for the other subsystem.

Each subcontractor would develop their subsystems using tools integrated with
Catalyst. At the appropriate points in the development cycle, the subcontractors
would export their data to Catalyst export files and ship the files to the prime
contractor. The prime contractor would import the subcontractor data and link it

78

together into an overall information network which encompased the entire
system.

The prime contractor could then browse and perform design reviews, traceability
completeness, test coverage, and other analyses on the overall information
network. The overall information network could be exported by the prime
contractor and delivered to the subcontractors, if appropriate, and to the
procurement, oversight, logistics and end user agencies for the program as
required. Having an integrated information base spanning the entire effort
would allow inconsistencies, errors, and missing information to be identified
earlier in the effort, saving downstream costs. It would facilitate communication
between the system stakeholders resulting in a higher quality system at a lower
overall cost.

The subcontractors would periodically deliver updates to their information. This
could be done at review points in the lifecycle such as PDR and CDR. Catalyst
allows an existing object community to be updated using a newer version of the
export file. This allows any annotations and links created with the earlier version
to be preserved when the newer version is loaded and merged. Sophisticiated
facilities for merging changes were designed for implementation under the
GEODE SBIR effort sponsored by the Naval Air Warfare Center. Unfortunately,
the implementation phase of the GEODE SBIR was not funded. Catalyst's
current merging facilities are adequate for many uses.

4.10 Storing Tool Data When the Tool is not Available

Often organizations which have different toolsets must collaborate with each
other. Catalyst provides a general method for addressing this problem, which is
illustrated in Figure 4.10-1. A contractor is using Catalyst and a number of
(potentially expensive or proprietary) integrated tools to develop a system. The
procurement, oversight, logistics, and/or end users do not own these tools and
can not afford to purchase them. Catalyst can still be used to allow electronic
delivery and exploitation of the information developed by the contractor using
these tools.

The data stored in the integrated tools used by the contractor is modeled at the
contractor site in Catalyst using a set of object classes and relations. The object
classes and relations are mapped to the integrated tools by integration
"wrappers" as described in Section 3.3. Catalyst Object Servers can be created at
the other organization's sites for these classes. The Catalyst Object Servers will
store the tool data without using the integrated tools. Catalyst Object Servers
rely on the ObjectStore database to store their data as described in Section 3.2.7.
The same object and relation model can be created at the other organizations
using Catalyst Object Servers, allowing them to store the same data.

79

Contractor
Facility

Encrypted and
sent over the
Internet or by

courier

Procurement,
Oversight,
Logistics,

or End-User
Facilities

Custom Analyses

HTML Pages

Spreadsheets

Reports

Graphs

Figure 4.10-1 Storing Tool Data when the Tool is not Available

The data developed by the contractor is written to an Catalyst export file using
the Catalyst Support Tool. This is an ASCII file which contains the full contents
of an object and relationship network. The data file is moved to the other
organizations in a manner consistent with its sensitivity. This may be through
encrypted Internet transfer or by physical courier. The data set is imported into
Catalyst at the other organization's site and the data is automatically stored in
the Catalyst Object Servers. Catalyst will automatically use the correct Catalyst

80

Object Server as long as it has the same class name as the original tool integration
wrapper server.

If the data set is very large it can be exported in pieces in mulitple files. The data
set will be reassembled automatically by Catalyst as each file is imported.

This scenario gives the other organizations the ability to browse the data,
perform impact analyses on it, and generate reports and graphs from it.
Functionality which is specific to the tools used by the contractor will not be
available, only access to the data created by the tools is provided.

4.11 Linking to WWW Pages

Catalyst supports a mechanism for linking objects to WWW pages and to other
externally stored data items such as graphics, audio and video files. WWW
pages may also be linked to Catalyst objects.

A scenario for using these capabilities is linking requirements objects stored in a
database to the requirements document in which they were defined. The objects
in the database are traversed using a Catalyst Tel script. An Annotation object is
created for each requirement object that links it to an HTML tag on the section of
the document where the requirement was defined. The HTML tags are based on
the number of the document section where the requirement was defined. This
was chosen for the tag because it was easy to find in the HTML and was
available in the requirements database. A second Tel script was used to parse the
HTML version of the requirements document and add the section number tags.

The Annotation objects allow the user to automatically launch an internet
browser and bring up the requirements document at the section where the
requirement was defined. Getting access to the full text of the requirements
document allows a user interested in a requirement to read any background
information and view any diagrams pertaining to the requirement. It also allows
the user to look at other requirements defined before and after the one of interest.
Since the requirements are defined in the document in a logical sequence, these
other requirements provide valuable context information. This scenario was
implemented on the Joint STARS program.

This scenario uses a feature of the Catalyst Browser. The Browser looks for
objects which contain both "file_path" and "filejype" attributes. When the user
views an object that contains both of these attributes the Browser adds a display
button to the view. If the user presses this button the Browser will launch the
tool specified by the "filejype" using the "file_path" as an argument. In this
case, "netscape"" was used for the "filejype" and the section number tag was
used as the "file_path." This feature allows links to be created to many types of
external entities such as WWW pages, graphics, audio, word processors, etc.

81

4.12 Generating WWW Pages

Catalyst can also generate WWW pages using Tel scripts. Any of the information
stored in Catalyst may be used in generating these WWW pages. A scenario for
generating WWW pages is the creation of an impact analysis report. A script has
been implemented which takes an impact analysis and generates an HTML file
which summarizes the results of the analysis. This script can be customized to
generate as much or as little detail about the analysis as desired.

Generating WWW pages from Catalyst information can be beneficial for
providing very convenient access to selected information for both internal and
external use. Using scripts to generate the pages automates the process allowing
them to be kept up to date with a minimal amount of effort. Arbitrarily complex
pages can be created which may contain graphs, tables, icons, html links and
Java applets. If necessary, the generation script can be run on demand so the
information is current each time a user views it.

4.13 Providing a Common Interchange Platform

Catalyst can be used as a common interchange platform for collections of domain
tools which operate on the same or related data. In this scenario, a collection of
related tools would be integrated with Catalyst. Each tool could be integrated
either loosely or tightly. Tools which operate on the same or very similar data
could share one object model. Tools which operate on different but related data
could use Tel scripts to translate their data to and from other models.

This scenario would allow data to be exchanged among multiple tools. It would
allow users with different tools to share data with each other. It would also
allow one user to use multiple tools to operate on one set of data. A user could
load the data into the tool most appropriate for the task they were performing.
This would allow the user to take advantage of the best features of each tool
without being restricted to any one tool.

This scenario is being implemented in the HLA Development Environment
(HIDE) being developed by SAIC, Lockheed Martin and Modus Operandi for
STRICOM. A collection of HLA model development tools are being integrated
into Catalyst to permit exchange of data among them. A custom tool for
developing and manipulating HLA data is also being developed to help hide the
Catalyst implementation details from the end user, who is only concerned with
HLA model development.

4.14 Building Object Networks from Documents

In this scenario, a document is parsed and the information it contains is captured
in Catalyst as a structured network of objects and relationships. This scenario
was applied to help automate the development of Catalyst's own requirements.
Once enough of Catalyst was operational, Catalyst was used to create, store, and
analyze its own requirements, tests, and their traceabilities.

82

The inputs used were the System Segment Specification document and the
Software Requirements Specification documents. A custom C++ program was
written to parse the requirements text sections and the requirements traceability
tables. The program was approximately 500 lines of C++ code. The parsing was
made easier by manual editing of the documents before running the parser.
Only the relevant sections of the documents were parsed. All introductory and
closing boilerplate sections were removed. The format of the sections was well
defined because the documents follow the 2167A format. Parsing the
requirements traceability tables was simplified because the column entries of the
tables were separated by tab characters. A C++ program was written because at
this time the Tel scripting environment had not been created. A Tel script would
have been easier to create and could have performed the same task.

The parsing program was patched together quickly because it only needed to be
run successfully one time in order to capture the requirements information in
Catalyst. From that point on, the requirements traceability was maintained in
Catalyst. Requirements traceability tables were generated from the Catalyst
requirements network.

A set of Tel scripts was written to assist in the development of the Catalyst
requirements. These scripts looked for system requirements which did not trace
down to software or interface requirements. The scripts found over a dozen of
these. The scripts looked for software and interface requirements which did not
trace from any system requirements. The scripts found over twenty of these.
The scripts looked for system, software, and interface requirements which were
not tested. Since the test traceability was still in development at this time, the
scripts found over one hundred requirements which were not linked to tests. All
these problems which had existed in the requirements documents were
eventually discovered and corrected using the automated analysis scripts.

If it was ever needed, the Catalyst requirements network could be migrated into
a COTS requirements development tool. The COTS tool, such as DOORS, would
be integrated into Catalyst. A Tel script would be written to traverse the Catalyst
requirements network and replicate it in DOORS. This would allow DOORS
capabilities to be applied to the requirements, while still permitting Catalyst to
access it.

This scenario can be generalized to capture in Catalyst useful information that is
stored in any electronic format that is readable and parsable. This includes
documents, spreadsheets, intelligence messages, help files, ASCII files, and
custom application data files. As long as there is some structure which can be
used to interpret the data, it can be modeled and stored in Catalyst. This can be
used to recover valuable information and rehost it in Catalyst where it can be
made easily accessible to users and where it can be analyzed using scripts or
migrated into newer tools.

Data stored in Catalyst can be analyzed much more easily than data stored in
formats such as word processor documents^ Catalyst explicitly represents ths

83

structure of information because it is by nature an object-oriented system. All
data in Catalyst is stored in objects with well defined classes and attributes
linked together by well defined relationships. Storing the structure explicitly
makes the stucture of the information easy to use. If a system requirement traces
to a software requirement this fact is explicitly represented using a relationship.
Automated analysis tools such as scripts can easily discover this connection by
requesting the set of software requirements related to the system requirement.
Documents containing paragraphs of free text are much harder to parse and
analyze.

Building object networks from documents and other information can be used to
help with training and maintenance of older systems which are still in
operational use. Parsing and capturing the information contained in the
document set from an older system could be used to create an electronically
browsable web of information about the system. Dependencies among parts of
the system could be captured using relationships. Users performing
maintenance on the system would be alerted to potential ripple effects of changes
they were making. Users wishing to understand the system could research it
electronically by following links from object to object rather than flipping
through paper documents or searching the documents using a word processor.
When the Catalyst Java Browser becomes available this scenario could be used to
provide Internet access to the information base for existing systems.

84

5 Catalyst Applications

This section describes some of the applications of Catalyst to date.

5.1 Joint STARS

The Joint STARS program has been the first end user of Catalyst since the start of
the ASEA project. Several Joint STARS personnel from Northrop Grumman
have been Catalyst reviewers since the start of the effort and have provided
many valuable comments on how an integration system could help real world
engineering projects. Targetting Joint STARS drove the selection of ORACLE
and RDD-100 as the first engineering tools to be integrated. This section
describes the Joint STARS application at Northrop Grumman.

The Joint Surveillance Target Attack Radar System Qoint STARS) is the most
advanced airborne ground surveillance radar system in the world. It provides
key strategic surveillance capabilities to the United States in both war and peace
time missions. Joint STARS provided US commanders with critical information
in the successful execution of both Desert Storm and the Joint Endeavor I & II
missions. The diverse threats facing the United States in the wake of the collapse
of the Soviet Union make the continued and effective evolution and
enhancement of Joint STARS an important need.

Joint STARS is a very complex hardware and software system, with a long
development history and a long anticipated service lifetime. Developing and
evolving Joint STARS has been complicated by a number of factors, including the
sheer size and complexity of the system, the large number of people required to
build and maintain it, the scarcity of system experts, limitations of the
engineering tools used, and the evolution of engineering technology.

During the middle 1980s when Joint STARS development started, relational
databases such as ORACLE were the only tools available for electronically
capturing and maintaining the traceability of the tens of thousands of
requirements needed to specify the system. Since that time, new engineering and
requirements tools such as RDD-100, and desktop computer databases such as
Microsoft Access have emerged to provide additional useful capabilities.
Though these tools provide valuable functionality, they operate in isolation from
one another, making it difficult to fully utilize the information they contain.
These database tools provide one way modeling and viewing data which is
useful, but do not capture the graphical and background information which is
contained in the Word and Frame documents for the system. To perform
engineering activities using the current set of tools requires access to multiple
tools, expertise in using each of the tools, and duplication of effort to bring up
and interact with each of the tools. Furthermore, there may be nowhere to store
valuable information such as traceability between data items stored in different
tools.

85

The Catalyst system was applied to provide valuable benefits to Joint STARS
evolution by integrating the tools and information required to support it.
Catalyst allows the user to browse and analyze all the integrated data using one
simple and graphical interface. This reduces the expertise required to access key
information and helps get the most benefit from the large base of information
which exists about Joint STARS. Catalyst can also capture and use information
such as linkages between data in different tools which will allow users to more
accurately assess the potential impacts and "ripple" effects of changes and
enhancements to the system. Catalyst technologies can be applied to link
information in databases with the corresponding information stored in
traditional documents. This linkage allows a user to transparently navigate
between databases and documents, allowing effortless access to the information
they need to perform their jobs. These capabilities enhance the accuracy and
reduce the effort needed for evolving the system.

5.2 I-SPECS

I-SPECS is the Integrated System for the Predictable Evolution of Complex Software
Systems.. The scope of I-SPECS is to adapt and integrate critical software
components and technologies into Catalyst to provide an integrated system for
performing requirements development and negotiation. The resulting integrated
system will function in support of predictable evolution of complex software
systems. The initially identified components include two key technologies—
WinWin and I-Doc—and their supporting tools, which will be adapted and
integrated into Catalyst. An event monitoring and reasoning capability known as
FLEA (which was developed by CS3, Inc.) and a database integration technology
known as Sanctuary ((which was developed by the University of Colorado at
Boulder) are also being integrated.

I-SPECS will be evaluated and demonstrated in the context of the Joint STARS
program, which is a large, complex, software intensive, evolutionary system
development effort.

5.3 Warner Robins Air Logistics Center

Modus Operandi is proposing (under AFRL PRDA 98-07-IFKPA) to support the
Joint STARS annual release program at Warner Robins ALC using Catalyst. A
new annual release program is started every January and runs for about nineteen
months. The annual release program is a good fit for Catalyst because it will
benefit from the technology and because it can generate both near term
validation of the approach plus continuing and measurable benefits. Two annual
release programs are already in progress. These programs will provide a
baseline of existing measures for comparison and quantitative evaluation of the
improvements realized using Catalyst technology.

86

5.4 Cape Canveral Launch Operations & Support Contract

Sverdrup, the Launch Operations & Support Contract prime contractor at Cape
Canveral Air Station (CCAS), selected Catalyst as the key technology for
integrating the diverse tools and data used in support Titan, Delta, and Atlas
launches. Sverdrup and SAIC are partnering with Modus Operandi on the $25M
effort to modernize and integrate the information systems used in support of
CCAS launches. The user community for the integrated system consists of over
300 users working at a dozen installations around CCAS. Tools and data used by
various facilities will be integrated using Catalyst and made available over the
Space Port Launch Operations Intranet. The integration made possible by
Catalyst will help to distribute information automatically to the people who need
it, will allow data to flow from one tool to another as needed, and will improve
mission readiness and efficiency by permitting global analysis of operations
which are not possible in a traditional stove piped operation. The integrated
system supported by Catalyst will provide new capabilities for supporting more
efficient launch operations at CCAS.

5.5 STRICOM

Catalyst is gaining acceptance in the Modeling and Simulation (M&S)
community. It is the integration framework for the U.S. Army's Simulation
Training and Instrumentation Command's (STRICOM) High-Level Architecture
Integrated Development Environment (HIDE). The High-Level Architecture
(HLA) is DoD's standard for enabling interoperability among all types of models
and simulations including C4I systems, and facilitating the reuse of simulation
assets.

The formal definition of the HLA consist of three components: the HLA Rules,
the HLA Interface Specification, and the HLA Object Model Template (OMT).
The rules describe the responsibilities of simulation components within the HLA.
The HLA Interface Specification defines the interface to the HLA Run-Time
Infrastructure (RTI), which provides the mechanisms for simulations to
communicate. The OMT provides a template for documenting HLA relevant
information about classes of simulations and their attributes and interactions. In
HLA nomenclature, the attributes and interactions of a class of simulations is
referred to as a Simulation Object Model (SOM) and the object model that defines
how a set SOMs interact is referred to as a Federation Object Model (FOM). A
simulation that implements the attributes and interactions of a SOM is referred to
as a Federate and the cumulative interaction of the Federates in a large scale
simulation is referred to as a Federation Execution.

The entire development process, from concept formulation, to SOM and FOM
development, to the Federation Execution is defined by the Federation
Development Process (FEDEP). HLA tools are currently being developed to
address each phase of the FEDEP. However, the tools are not interoperable and
most are being developed in a stovepipe fashion. In HIDE, Catalyst provides the

87

common integration framework that supports a common object representation
for HLA-based information, allowing data from various tools to be shared and
semantically linked, thus giving an integrated view of related HLA FEDEP data.
This is critical in providing a robust environment that supports the FEDEP
process, where different tools support each phase. This linkage supports
traceability among design artifacts from different phases and allows the Catalyst
client tools to perform comprehensive analysis and operations on the entire set of
data, regardless of which tool the data originated from. For example, a
simulation Requirements Document defined during Concept Formulation may
be linked to a particular Federate that fulfills a role in the Federation. If there are
changes to the Requirements Document, a Catalyst Impact Analysis may be
performed and it will identify the linked Federate as a potentially impacted
object. Another benefit that Catalyst provides to the HIDE environment is the
ability to enact process models. As mentioned previously, the development of a
Federation Execution proceeds as specified by the FEDEP model. In the HIDE
program, the FEDEP model has been defined using the Catalyst Process
Definition Tool and may be executed using the Catalyst Process Enactment Tool.
In the Process Enactment Tool, at each phase of the FEDEP, appropriate
supporting tools may be launched for that phase. The design artifacts created
from the tools from each phase may be semantically linked across phases,
providing the benefits discussed previously.

In HIDE, the Catalyst CORBA infrastructure and the existing client tools will
greatly support the development and maintainability of evolving large scale
distributed simulations, in the same manner it supports large scale systems
engineering efforts

The Browser provides the ability to browse integrate data from heterogeneous
data sources; the Impact Analysis Tool provides the ability to determine how
changes to an object may propagate and affect other objects; the Process
Definition and Enactment tools provide for definition and execution of process
models. In general, these tools perform the same functions and provide the same
support as they do in any other domain. Catalyst is also allowing the Modeling
and Simulation community to benefit from other tools developed for the System
and Software Engineering communities. Under the Evolutionary Design of
Complex Systems (EDSC) program, numerous engineering tools are being
integrated with Catalyst. HIDE has already made use of one such integrated
tool, the WinWin requirements negotiation and rational capture tool developed
by the University of Southern California. This will help support the large scale
collaborative requirements negotiation efforts that go into designing and
developing a Federation Execution.

Since HIDE is currently a "work-in-progress", additional client tools are
envisioned that are specific to the HLA domain. These include specialized
SOM/FOM development tools that support Semantic Consistency and
Completeness, Scenario Generation, and Federation Execution. Consistency and
Completeness extends the basic impact analysis principles to determine how and

88

when "fixes" to a change resulting to an impact are consistent and complete. For
example, if a FOM requirement is changed, semantic consistency can help
determine when the FOM is consistent with the change. Scenario Generation
allows a Federation scenario developer to use the integrated assets, which
includes objects and their possible interactions, to define a simulation scenario
for execution with those assets. Federation Execution support is the ability to
initialize and control an executing federation. These ideas, as well as generic
enhancements to Catalyst, will be evaluated in HIDE follow-on efforts.

5.6 MCC Software and Systems Engineering Productivity

MCC is conducting consortial research activities under the Software and Systems
Engineering Productivity (SSEP) project. The goal of SSEP is to reduce systems
and software development costs and time cycles by supporting the adoption of
product-line strategies focused on the application of architecture-based
generation and testing approaches.

SSEP has been engaged in evaluating Catalyst as a candidate for the
infrastructure to achieve information integration and tool interoperability.
Evalution activities include prototyping a tool integration framework using the
loose integration strategy and managing relationships among objects which are
originated from different information resources using the Catalyst General
Relationship Manager (GRM).

5.7 NAWC GEODE SBIR

Modus Operandi conducted a Phase I Small Business Innovation Research (SBIR)
project for the Naval Air Warfare Center (NAWC). The GEOgraphically
Distributed System Engineering Environment (GEODE) project extended
Catalyst to allow geographically separated personnel to effectively collaborate on
complex engineering data. Synchronous collaborative technologies such as
remote data browsing, audio, video, and whiteboard conferencing were
evaluated and found to be inexpensive and effective. These technologies provide
the immediate sharing and discussion of engineering data required for
brainstorming, review, design communication and team building. An Internet
based remote data browsing capability was prototyped and found to be effective
for remote viewing of engineering data such as requirements traceability.

An asynchronous collaborative capability known as the Object Community
Synchronization Tool was prototyped and evaluated. This tool supports
correctly and consistently exchanging complex engineering models between
remote sites. The prototype tool builds on existing Catalyst capabilities and
allows remote sites to jointly develop and maintain baselines of complex and
interrelated data. The ability to maintain remote baselines of information is
critical for ensuring that distributed teams are all working from the same plans
and goals. It also enables remote design reviews, remote program monitoring,

89

and other activities which allow an organization to make use of remotely located
personnel expertise.

The Phase I efforts concluded that creating the GEODE collaborative engineering
environment based on Catalyst is both feasible and effective for improving
distributed engineering practices. The Phase II proposal recommended
integrating widely available COTS video and whiteboard capabilities for
supporting remote meetings and design reviews. It also recommended
developing a production version of the Object Community Synchronization Tool
to complete the initial collaborative engineering environment. Unfortunately,
Phase II funding has not been secured as yet to continue this valuable effort.

90

6 Future Directions

6.1 Platform Support

One of the most frequently requested enhancements to Catalyst is the support of
additional operating system and hardware platforms. Catalyst currently is
supported only on Solaris 2.4 or higher. Many organizations have requested
support for accessing the client tools from Windows95. This is the most
requested client platform. Some organizations have asked for support for
accessing client tools and running servers under WindowsNT. Following these
requests have been a smaller number of requests for other UNIX environments,
particularly Silicon Graphics, which is widely used by military simulation
developers.

6.1.1 Java Clients

The most reasonable strategy for meeting the requests for wider client tool
support is to port them to Java. This will allow them to be used from any
platform that supports the Java virtual machine, which is almost every platform
commonly in use. The Catalyst client tools will most likely be constructed as
Java applications, given their size and the need for accessing files on the local
machine. Smaller versions of them, particularly the Browser, may be created as
applets to allow them to be downloaded and used more conveniently.

Some prototyping is underway under other related Catalyst R&D efforts to
determine the feasibility of porting Catalyst clients to Java. The Object Cache has
been ported and seems to be operating correctly. It is still too early to tell if this
strategy will work, but with most of the world betting on Java for their user
interfaces, it appears likely that Java will eventually mature enough to be usable.

6.1.2 VisiBroker Servers

Since SunSoft has discontinued the NEO CORBA implementation that Catalyst is
built on, it is important to choose another ORB and port Catalyst servers to it.
Modus Operandi has looked at various products, talked to their vendors, and
received feedback from groups like MCC, who have tested most of the ORBs
available today. The VisiBroker ORB from Visigenic Software looks like the best
choice for replacing NEO in Catalyst. It is one of the fastest ORBs, and has the
largest market share as of early 1998. It is also portable to many platforms
requested by Catalyst users.

Porting Catalyst to VisiBroker will require porting the Object Cache, the Catalyst
Object Servers, the General Relation Manager, and all tightly integrated tools
such as ORACLE.

91

6.2 Browser Improvements

The Browser is a key Catalyst Tool because of its ability to view and manipulate
all data in Catalyst. A number of important improvements have been requested
by users or identified by Modus Operandi.

6.2.1 Network Browser

A Browser that showed objects and relationships graphically using a network
instead of a hierarchy like the current Browser would be very useful. The
hierarchy view is very useful for a lot of engineering data and would be
preserved. The new network browser would be useful for understanding data
that has cycles. Each object would appear on the network browser window only
once. The network browser would use some heuristic to try to place expanded
objects to minimize line crossing, but the user would be able to rearrange the
object locations as desired. Objects could be excluded from the view by adding
them to an exclude list.

6.2.2 Schema Browser

The Browser could be extended by adding a schema browser window. This
window would allow the user to graphically browse the schema. Classes and
relations would be graphically shown using a network of boxes representing
classes and labeled arrows representing relations. The user could add classes to
the view by selecting them from a list. The user could show the relations from a
class by selecting the class and hitting an expand button. Classes could be
excluded from the view by adding them to an exclude list. This would be useful
for removing classes that are related to almost every class, such as Annotation.
Various options for showing and hiding forward and inverse relation names
could be supported. An option for showing the attributes defined by a class
could be supported. A good schema browser would help users understand the
data model used by their Catalyst installation.

A really ambitious schema browser would allow the user to edit the schema.
New classes and relations could be added. Existing classes and relations could
be modified or deleted. These features would be very difficult to implement,
particularly if automated migration of the effected data was required.

A prototype schema browser was implemented using Tel scripting. A special
version of the Catalyst Tel shell was created which links in GUI commands from
a Tel extension known as "Tk". The Tcl/Tk scripting shell allows window,
menu, and drawing operations to be performed. A display only schema browser
was prototyped using this shell in about 7 days of effort. Using the prototype
has confirmed the usefulness of schema browsers in understanding the structure
of Catalyst data.

92

6.2.3 Better Object Community Support

The Browser could be extended to make it easier to work with an entire object
community as a single unit. An object community view or window could be
added, which would show the user what object communities were available to
them. Each object community would be represented as a single user-defined
icon. The object community could be duplicated, locked, unlocked, imported,
exported, or deleted using one menu operation. This would make it much easier
to manipulate object communities.

The definition of the object community would be integrated with each actual
object community instance. Object communities are defined as a set of starting
objects, a set of member relations, and a set of reference relations. This set of
items is the object community definition. An instance of an object community is
specified by the set of starting objects and the object community definition. This
is somewhat analogous to a class (which would be the object community
definition) and an object (which would be the object community instance).

The enhanced Browser would contain a graphical schema viewing window that
could be used to graphically create object community definitions. The objects
and relations that were part of the object community definition would be
selected by the user and added to the definition using a menu item. Member
classes and relations would be shown in green. Reference relations and classes
would be shown in blue. Non-member items would be shown in black. Object
community definitions would be managed as icons in the enhanced Browser.
They could be shared among multiple users (in which case the user responsible
for them should lock them) and potentially used to define many object
community instances. Each object community instance would keep a pointer to
its object community definition, for use by operations on the community.

These enhancements would make it much easier to create and work with
complex sets of data in Catalyst by raising the abstraction level above the level of
individual objects and relationships.

6.3 Distributed GRM Support

A distributed implementation of the GRM would be useful for geographically
distributed teams working in one Catalyst environment and for supporting
teams with more than 100 engineers. The current GRM design is centralized and
uses Solaris memory mapped files. Catalyst was designed for distributed
relation management and several designs have been worked out for supporting
distributed relation management. Probably the best engineering solution
involves using one GRM for each platform that supports Catalyst servers. The
relationships for the objects stored in the servers on each platform would be
managed by the GRM that belonged to that platform. The GRM dedicated to a
platform would not necessarily have to run on that platform, but could run on a
companion machine nearby on the network.

93

Each relationship would be stored in either one or two GRMs. If both sides of
the relationship were stored in servers on the same machine, the relationship
would be stored only in the platform GRM. If the domain and range objects
were stored in servers on different machines, the relationship would be stored in
the GRMs for each of the two machines.

Clients would manipulate the relationships for an object by calling the
RelationAccess interface of the object itself, rather than by calling the GRM as is
done now. Since the Object Cache hides the details of relationship manipulation
from client programs, this change would have minimal impact on the existing
clients. In any case, relationship calls would be changed to replace the GRM
with the domain or range object as the target of the call. This would require
moving one variable from the parameter list to be the target of the call.

A significant study and prototyping effort needs to be conducted to ensure the
technical soundness of any distributed relation management approach. A
distributed relation manager would allow Catalyst data networks to grow
without any limit that we are aware of. To add more capacity would require
simply adding more machines, each of which would support a number of object
servers and one GRM server.

6.4 Content Based Queries

Catalyst was designed to efficiently store and process fine-grained structured
information, such as that produced and used during engineering efforts.
Catalyst uses explicitly stored relationships between objects to indicate that the
objects are somehow related or interact. This is a very efficient model for dealing
with engineering information. It may be thought of as a navigational access
model in which explicit relationships are followed from object to object to access
the information which is desired.

Another, orthogonal, access model is to use content based queries to find desired
information. This is the method traditionally used by relational and other types
of databases which process ad-hoc queries by searching the content of
information for the desired results. This is a completely different model which is
much less efficient but has the advantage of allowing the user to retrieve
information without having any explicitly stored path to it.

It was originally envisioned that Catalyst would emphasize explicit navigation
but would also support content based queries using the CORBA Query Service.
This would allow Catalyst to use a COTS solution for content based queries.
Unfortunately, no COTS implementation of the Query Service has been
produced which could be used in Catalyst. This is due in large part to the lack of
a true SQL standard and to the existence of a separate standard for object base
queries. It will be very difficult to create a unified Query Service specification for
CORBA which can be implemented efficiently.

94

It would be possible and very worthwhile to investigate implementing some
type of simple but powerful query capability for Catalyst. By making certain
restrictions, it should be possible to create a very useful capability in a reasonable
amount of effort. It would also be useful to create a more complex capability
which would permit the so called heterogeneous join operation. This would
allow information stored in one tool to be "joined" in the SQL sense with data
stored in another tool. This would provide a very powerful data analysis
capability. It could be used to "mine" integrated data sets for correlations, to
perform data fusion, and to create relationships between tools automatically.

A query capability would greatly enhance Catalyst's ability to exploit the
integration of information.

CU.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-81055

95

MISSION
OF

ÄFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

J

